
XQuery as an Annotation Query Language: a Use Case Analysis

Steve Cassidy

Department of Computing,
Macquarie University,

Sydney, Australia
Steve.Cassidy@mq.edu.au

http://www.ics.mq.edu.au/˜cassidy

Abstract
Recent work has shown that single data model can represent many different kinds of Linguistic annotation. This data model can be
expressed equivalently as a directed graph of temporal nodes (Bird and Liberman, Speech Communication, 2000) as a set of intersecting
hierarchies (Cassidy and Harrington, Speech Communication, 2000). While some tools are being built to support this data model, there
is as yet no query language that can be used to search annotations stored in this way. Since the hierarchical view of annotations has much
in common with the XML data model, this paper examines a recent proposal for an XML query language as a candidate annotation query
language. The methodology used is a use case analysis. The result of the analysis shows that XQuery provides many useful features
particularly when queries include hierarchical constraints but that it is weak in expressing sequential constraints.

1. Introduction
Recent work has shown that a single data model can

represent many different kinds of Linguistic annotation.
This data model can be expressed equivalently as a directed
graph of temporal nodes (Bird and Liberman, 2000) or as a
group of intersecting hierarchies (Cassidy and Harrington,
2000).

While the data model is now well defined and progress
is being made on implementing annotation tools based on
the model there is as yet no query language that can be used
to search corpora stored in this format. Bird et al. (2000)
propose an annotation graph query language which closely
follows the underlying graph structure in the data model.
While this language appears to have adequate expressive
power, some quite simple queries can become difficult to
express (Cassidy et al., 2000). Other query languages for
annotations exist in systems such as Emu (Cassidy and Har-
rington, 2000) and MATE (McKelvie et al., 2001); while
these may prove useful starting points for an eventual query
language design, they are either known to be incomplete or
have not yet been shown to provide adequate coverage of
all Linguistic annotation requirements.

In a bid to better understand the requirements for an
annotation query language, we are collecting a set of repre-
sentative use cases that might be used in an objective anal-
ysis of a query language proposal. This paper illustrates
this approach by presenting an evaluation of the XQuery
language (Boag et al., 1999) which has been developed to
search XML documents. As we will show, XML shares
many properties with the annotation data model and so our
work can be usefully informed by the efforts of the XML
query community.

1.1. Data Models

A data model is a way of structuring data for access by
a computer program. In this case it is a way of storing the
annotations on a piece of Linguistic data. A data model
should capture the important features of the real data and
make them available to programs in a natural way.

The annotation graph data model (Bird and Liberman,

2000) has been proposed as a general purpose data structure
for representing Linguistic annotations in computer sys-
tems. An annotation graph (AG) is a directed graph whose
nodes represent temporal locations (which may or may not
be associated with time values) and whose arcs represent
annotated regions with associated features. The AG model
foregrounds the sequential nature of Linguistic data and an-
notations and represents hierarchical structures implicitly
by having parent arcs span their children (Figure 1).

Another view of this data model is given by the Emu
system (Cassidy and Harrington, 2000) which foregrounds
the hierarchical structure of an annotation. In the Emu
model, an annotation consists a directed graph with anno-
tations as nodes and arcs representing three kinds of rela-
tionship: sequence, domination and association (Figure 2).
While this appears very different to the AG model we be-
lieve them to be isomorphic (Cassidy and Harrington, 2000)
and of equal expressive power. The main advantage of the
Emu view is that it makes the relationships in the annotation
data explicit and corresponds more closely to the concep-
tual model held by corpus constructors. For this reason, this
paper will consider annotations according to the Emu data
model. However it is important to emphasise the equiva-
lence with the AG model and so we will refer to Emu/AG
annotations throughout the paper.

1.2. Relationship to XML

XML (Bray et al., 2000) is a standard markup language
developed by the World Wide Web Consortium which is
now used in many application areas that require a standard-
ised data annotation format. The XML standard defines
a serialisation syntax (the well known <tag>. . .</tag>
syntax) and a data model, known as the XML Information
Set (Cowan and Tobin, 2001). In essence, the XML data
model consists of a single hierarchy of nodes which can
be either the root (document) node, elements or text nodes.
Element nodes can have associated attributes with arbitrary
values and these can be used to link disparate parts of the
hierarchy using a pointer mechanism based on unique at-
tribute names (IDREF).

10
12257

11
14120

P/aa

19
13650

20
13650

T/H*/1

12
15240

P/r
18

57040
0
0

1
2360

P/h#

T/0

2
3270

P/sh

3
5200S/NP

W/she

17
22179

Imt/L-

S/S

Itl/L%

P/iy

4
6160

P/hv
6

9680

S/V

W/had

S/VP

5
8720

P/ae P/dcl
7

10173

P/y
8

11077

W/your

S/NP

P/axr
9

12019

P/dcl
14

16626

W/dark/1

P/d
13

16200

P/kcl P/k
15

18480

P/s
W/suit

16
20685

P/uw P/q

Figure 1: An example annotation graph showing an utterance from the TIMIT database which has been augmented with
both a syntactic annotation and a ToBI style intonational annotation. Each anchor (small rectangles) represents a time point
and each arc represents a span of time. The labels on each arc consist of a type and a label, so P/sh denotes an /sh/ phoneme.
Hierarchical relations are represented here implicitly by parent arcs spanning their children.

she

L-

L%

had your dark suit

h# sh iy hv ae dcl yaxr dcld aa r kcl k s uw q

H*

NP

S

Phoneme

Word

Intermediate

Intonational

Syntax

she had your dark suit

Tone

VP

V

NP

Figure 2: An example Emu annotation showing the same example as Fig 1. The names of the levels are shown on the left,
the Word level has been duplicated to show the links to both the syntactic and intonational hierarchies. The single Tone
event H* is associated with the word ‘dark’. Time information at the phoneme level is used to derive times for all higher
levels.

There is a close correspondence between the XML and
Emu/AG data models which is summarised in Table 1.
In both cases, the data model consists of hierarchies of
nodes which can have associated attributes (called features
in AG/Emu). Emu/AG ensures that each node has a defined
start and end anchor (which may be associated with a time);
these can be modeled in XML with required attributes for
each element node. The main difference between the data
models is the requirement for a unique root node and hence
a single hierarchy in XML documents. A consequence of
this is that multi-hierarchy annotations can’t be expressed
directly in a single XML document.

This restriction has been overcome by using techniques
such as standoff markup (Thompson and McKelvie, 1997)
where multiple hierarchies are stored in different XML doc-
uments and linked to a source document using external
references. Using this technique allows storage of a data
model that is largely equivalent to that of Emu/AG.

The obvious motivation for using XML as an annota-
tion format is that there is now a massive effort to develop

tools for manipulation of XML in the software industry.
These inclde authoring environments, transformation and
presentation tools, query languages and efficient storage
and transport mechanisms.

1.3. XML Query Languages

One of the stated advantages of XML is that it allows
a document designer to make the semantic structure of a
document explicit (Berners-Lee et al., 2001). Following
this, large collections of XML marked up data have be-
come available and the requirement for a query language
to extract information from these documents is clear.

The problem of searching XML documents can be seen
as a special case of querying semi-structured data: data
which has some structure but which is not stored in a fixed
format like a relational database (Buneman, 1997). The
work to define an XML query language has been driven
largely from work in this area. Recently a proposal has
been made under the banner of the World Wide Web Con-
sortium for an XML query language called XQuery (Boag

XML Data Model Emu Data Model
Nodes: documents, elements with attributes Nodes: segments with start/end time and attributes
Single hierarchy of elements with unique root node Multiple hierarchies, many root nodes
Node must have a single parent Node can have many parents
Nodes are fully ordered (each node has a Nodes are partially ordered (they may overlap and a node
unique successor) may have more than one successor)
Elements have attributes Nodes have one or more features
Arbitrary elements can be related using IDREFS Nodes can be related by association relations

Table 1: The relationship between the XML and Emu data models

et al., 1999) which draws on earlier proposals (Robie et al.,
2000; Deutsch et al., 1998) and existing W3C standards.

Queries in XQuery work on XML documents and re-
turn a set of document fragments. This provides the im-
portant property of compositionality which allows queries
to work on the results of earlier queries. A central part of
the XQuery standard is the XPath path language which is a
W3C standard in it’s own right (Clark and DeRose, 1999).
XPath expressions select nodes in the XML hierarchy based
on paths from the root node or some other known point in
the document. XQuery expressions can provide additional
constraints on the nodes selected by XPath expressions and
can then describe the structure of the returned XML frag-
ment which embeds the nodes satisfying all constraints.

Since XQuery is only a proposed standard the language
is something of a moving target. The discussion here con-
centrates on the major features of the language which are
likely to be preserved in the final standard. In some cases
informed guesses have been made about how some features
of the language might work.

1.4. Use Case Analysis
In order to evaluate XQuery as an annotation query lan-

guage we attempt to express some real queries, or use cases,
in the language. Note that we don’t want to have to first
transform the annotation to multiple XML documents in
order to do this, rather we’ll suggest how XQuery might be
extended to be able to cope with intersecting hierarchies in
the Emu/AG model.

Use cases are selected to illustrate real Linguistic
queries but also to exercise different requirements of a
query language. In the larger use case gathering exercise
we seek to collect a representative set of queries. The cases
described here have been selected to show the strengths and
weaknesses of XQuery in particular. All of the queries cited
here refer to the style of annotation illustrated in Fig 2.

2. Use Cases
2.1. Simple XPath Query

The first example query illustrates the basic structure of
XQuery and the use of path expressions to locate elements
in an annotation.

Find all vowel phonemes labels A, E, I, O or U spo-
ken by male talkers.

This is a common kind of query in phonetics research
and is well supported in the current Emu query language
(Cassidy and Harrington, 2000). The result of the query
would be a list of vowel tokens which could then be used to
access associated speech data (via their start and end times).

One way of expressing this query in XQuery is shown
here:

//talker[@sex="male"]//word/
phoneme[@label = (A, E, I, O, U)]

This query1 uses an XPath (Clark and DeRose, 1999) path
expression to restrict the result to phonemes which are di-
rect children of words (/ denotes a direct link) which are de-
scendants (//) of talkers. The talkers are restricted to those
which have a sex attribute of male and the phonemes are
restricted based on their label attribute. These restrictions
are made in Xpath by following the element name by addi-
tional conditions in square brackets. The result of the query
is a collection of phoneme elements which, in XML, would
be returned as XML document fragments.

If this were an XML document, the returned values
would be the serialisation of the matching nodes and all
their attributes and child nodes. Importantly, each match
will be a valid XML document in itself which could form
the target for a further query. This is an important prop-
erty to retain in the annotation domain; hence the result of
a query should be a valid annotation. In this case, the re-
sult would be a collection of annotations (and associated
features and anchors) corresponding to the nodes matching
the path expression and this would be a valid annotation.

An alternative return value from a query would be a list
of references into the original annotation. This might be
useful if later queries or reports wanted to refer to other
associations with the matched elements. For example, if
after finding the vowels matched by this query we wanted
to locate the words in which they appear. This could be
supported by retaining unique identifiers for each matching
result such that the resulting annotation is a proper subset
of the original annotaiton.

2.2. Embedded Query

In some cases it is not possible to express a query in
a single clause. XQuery allows embedded queries where
the result of one query is passed to another (recall that the
result of a query is a well formed XML document). This
query illustrates the use of this facility.

Find all unique words and return their phonemic
transcriptions.

This query can be expressed in XQuery as follows:

1XPath expressions would normally be written on one line like
//talker//word/phoneme, they have been split onto multi-
ple lines here to fit into the two-column paper format

FOR $wl IN
distinct-values(//word/@label)

RETURN
<word label={$wl}>

$wl/parent::word/phoneme
</word>

This query is structured in two parts: the FOR clause
defines a variable $wlwhich will take on successive values
as returned by the path expression. The RETURN clause
specifies the form of the XML data to be returned for each
match.

The outer query here finds distinct word labels which
are attribute nodes in the XML data model but would be
node feature values in the Emu/AG model. The RETURN
clause constructs a word element with the same label as
the one matched in the FOR clause. The children of this
word will be the result of another XPath expression which
finds the phoneme children of the word node matched in
the outer query. Note that we take care to return words with
distinct labels (word types) rather than distinct word ele-
ments (word tokens) which would be returned by the path
expression distinct(//word).

To locate this word, the path expression
$wl/parent::word is used. This is a path ex-
pression which selects word along the parent axis (rather
than the default child axis). In this case the word element
is the parent of the attribute node matched in the outer
query. XPath includes a number of axes that can be used in
path expressions, for example following-sibling or
ancestor. The notation /word/phoneme is shorthand
for /child::word/child::phoneme.

The result of the inner path expression is a set of
phoneme nodes. Hence the result of the the whole query
is a set of word nodes dominating phoneme children.

2.3. Multiple Hierarchies

The primary difference between the XML and Emu/AG
data models is the presence of multiple intersecting hierar-
chies in annotations. This query illustrates the need to be
able to traverse these intersecting hierarchies.

Find L- Intermediate phrases containing words
which form an NP Syntax phrase

There are two approaches to answering this query. The
first method looks for NP phrases phrases which dominate
words which all have the same L- Intermediate phrase par-
ent. The second considers these two kinds of phrases as
potentially overlapping temporal regions and finds NP syn-
tax regions that are wholly inside L- Intermediate phrases.

The first approach can be stated as:

FOR $np in //syntax[@label="NP"]
LET $iparent ::=

$np//word[1]/parent::inter
WHERE

EVERY $int IN
$np//word/parent::inter

SATISFIES ($int == $iparent) AND
($int/@label = "L-")

RETURN
$iparent

This query works by finding NP syntax elements and
constraining every intermediate (note: shortened in the ex-
ample to inter) parent of the word children of that NP
to be the same as that of the first word – ie. that all the
words are siblings relative to the intermediate node. The
LET clause is used to establish a variable relative to a node
matched in the FOR clause. In this example the variable
$iparent is bound to the intermediate phrase parent of
the first word in $np. The WHERE clause provides addi-
tional constraints on the matched nodes, in this case that ev-
ery intermediate parent of a word child of $np is the same
as $iparent, the parent of the first word, and has a label
“L-”.Note that it is not sufficient to constrain the label on
the intermediate node to have an L- label since this would
allow NPs spanning two adjacent L- phrases to match.

This query could be made more compact with the defi-
nition of a new function sibling which was true if a set
of nodes were siblings relative to another node:

FOR $np in //syntax[@label="NP"]
WHERE

siblings($np//word,
$np//word[1]/parent::inter)

RETURN
$iparent

It is interesting to note that the only generalisation of
the XQuery model required here is to allow expressions in-
volving the parent axis to return node sets rather than single
nodes. Other than this these queries are valid examples of
XQuery.

The alternate approach looks at the boundary times of
the two kinds of phrase segments. It could be stated as:

FOR $np in //syntax[@label="NP"]
$int in //inter[@label="L-"]

WHERE
$np/@start >= $int/@start AND
$np/@end <= $int/@end

RETURN
$int

This solution is similar to that used for the example
queries in (Teich et al., 2001) to query annotations stored in
XML documents. While this seems to provide a simpler so-
lution, note that depending on the corpus structure, this ap-
proach could yield false positives since it does not constrain
the two phrases to share any words. If the corpus contains
annotations of overlapping speech, this query could return
an intermediate phrase by one speaker that overlaps an NP
by another.

2.4. Sequential Constraints

The previous cases illustrate the suitability of the XPath
component of XQuery to specify hierarchical constraints
within an annotation, even when multiple hierarchies are
involved. A common requirement in Linguistic corpora is
to specify sequential patterns which can often involve com-
plex constraints. A good example is the use of a query to
find examples of groupings defined by a particular syntactic
or phonological construct. This construct might be defined
in terms of a regular or context free grammar. Hence the

query language needs to be able to express regular or con-
text free constraints. The example cited here is taken from
a phonetic study which was interested in syllabic structures
defined as sequences of consonants and vowels following a
simple regular grammar:

Find sequences of any number of consonant
phonemes followed by a single vowel followed by any
number of consonants: C+VC+.

Such patterns are easily specified in regular expressions
on strings but in XQuery we have to work to satisfy this
query. While XPath can be used to specify sequences of
nodes (using the following-sibling axis:) it is not
able to state the ‘one or more’ constraint in the regular ex-
pression ‘C+’. (This limitation is not isolated to sequential
paths, XPath can’t apply a constraint like this along any
axis.)

The solution in this case is to write functions specific to
this query which check for ‘one or more consonants’ pre-
ceding or following a vowel. User defined functions are an
integral part of XQuery and this recursive function returns
sequences of elements along the following-sibling
axis which have the label “C”:

define function fsequence(element $s)
returns element * {

let $c := $s/following-sibling::
phoneme[@label="C"]

if (empty($c)) then return ()
else return ($c, fsequence($c))

}

A similar function (psequence) can be defined to
work on the preceding-sibling axis and these two
functions can then be used to state the query:

FOR $v in //phoneme[@label="V"]
LET $pc ::= psequence($v)

$fc ::= fsequence($v)
WHEN

$pc != () AND $fc != ()
RETURN

<result>
($pc,$v,$fc)

</result>

This query first finds vowel phonemes and then sets up
two variables in the LET clause corresponding to C+ se-
quences before and after the vowel. The WHEN clause tests
whether the sequences of consonants are empty and if they
are not the RETURN clause constructs a <result> node
containing the matched sequence.

While the functions psequence and fsequence
might be generalised a little it seems clear that quite a bit
of work needs to be done in order to specify patterns of
this nature. More complicated conditions would be harder
to implement and the fit between the statement of the query
and it’s realisation is very poor for this class of query. In ad-
dition, the use of user defined functions in this way prevents
any optimisation of these kinds of queries in a database sys-
tem.

2.5. Embedded Clauses

While the previous case tried to express a regular ex-
pression like query, this case is concerned with finding in-
stances of a context-free grammar rule. It illustrates a sim-
ilar class of weakness in XPath to the previous case but
along a different axis.

The context free grammar rule ’NP � Adj NP’ can
produce embedded NP clauses to arbitrary depth. Find
examples of NP clauses where all embedded NPs are of
this type except for the final NP which should be a sin-
gleton noun.

This query might match clauses like ‘big angry hairy
goat’ but should reject ‘the goat’ (which follows the struc-
ture ‘NP � Det NP’). To answer this query we much check
that each NP node in the parent/child sequence has Adj and
NP children except for the final one. An XPath expression
for a one-level deep clause would be:

//syntax[@label=’NP’ and
child:syntax[label=’Adj’]]

/syntax[@label=’NP’]
/syntax[@label=’N’]

(In fact, this expression would give false positive
matches since we don’t say that the top NP has only two
children). This path expression uses a conjunction inside
the qualifier for the first path step stating that the syntax
node must have an NP label and have a syntax child with
an Adj label. The second step states that the NP must have a
syntax child labelled NP which has a syntax child labelled
N. To extend this to the arbitrary level of embedding re-
quired by the use case requires a function similar to that in
the previous case to enforce a constraint on a sequence of
steps along the child axis.

3. Discussion
The examples above illustrate the main features of

XQuery and show that it can be applied to the Emu/AG
data model without the need for syntactic changes. In
particular, the XPath component of XQuery is very well
suited to specifying hierarchical constraints in annotation
queries and extends easily to intersecting hierarchies if the
multiple-parent assumption is made.

The provision of different axes (parent, child, sibling,
etc) in XPath is a powerful mechanism which could be use-
fully extended for annotation queries: one could imagine
defining, for example, an ‘overlap’ axis to allow selection
of temporally overlapping nodes.

An important weakness of XQuery is illustrated by the
final two use cases which require constraints on a sequence
of nodes along an axis. The problem is that an XPath is
made up of a sequence of steps along an axis but that here
we need to specify conditions on multiple steps. This is
most apparent for the sibling axes but might also occur for
example along an associative axis or on the parent/child
axis. The AGQL query language proposed by Bird et al.
(2000) includes this facility for sequential path expressions.
The C+VC+ query can be expressed in that language as:

select
F(W).[label: CVC].F(Z)

where
W.[cons]+.X.[vow].Y.[cons]+.Z

(where the details of the conditions in square brackets
have been omitted for brevity). This query asks for one
or more cons arcs between anchors W and X, a vow arc
between X and Y and one or more cons arcs between Y
and Z. The combination of this kind of facility with the
flexibility to use different axes in XPath would provide a
powerful component of an annotation query language.

It is clear that the most natural queries to express in
XQuery are those dealing with purely hierarchical con-
straints. An earlier review of the AG query language pro-
posed by Bird et al. (2000) found that it could express
sequential constraints well but was awkward hierarchical
queries (Cassidy et al., 2000). These strengths come di-
rectly from the forms of the underlying data models: XML
is primarily hierarchical, AGs are primarily sequential. Our
observations are that the requirements of Linguistic anno-
tation are for a free mixture of sequential and hierarchical
structures. A query language combining the strengths of
XQuery and the AGQL would go a long way towards satis-
fying these requirements.

4. References
Tim Berners-Lee, James Hendler, and Ora Lassila.

2001. The Semantic Web. Scientific American, May.
http://www.scientificamerican.com/
2001/0501issue/0501berners-lee.html.

S. Bird and M. Liberman. 2000. A Formal Framework for
Linguistics Annotation. Speech Communication.

S. Bird, P. Buneman, and W. C. Tan. 2000. Towards a
Query Language for Annotation Graphs. In Proceedings
of LREC 2000, Athens, Greece.

Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela
Florescu, Jonathan Robie, Jerome Simeon, and Mugur
Stefanescu. 1999. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, November. http://
www.w3.org/TR/xpath.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and
Eve Maler. 2000. Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommendation, October.
http://www.w3.org/TR/REC-xml.

Peter Buneman. 1997. Semistructured data. In PODS’97.
Invited Tutorial.

S. Cassidy and J. Harrington. 2000. Multi-level Annota-
tion in the Emu Speech Database Management System.
Speech Communication, 33:61–77.

S. Cassidy, P. Welby, J. McGory, and M. Beckman. 2000.
Testing the adequacy of query languages against anno-
tated spoken dialog. In Proceedings of the Speech Sci-
ence and Technology Conference, pages 428–433, Can-
berra, Australia. Australian Speech Science and Technol-
ogy Association.

James Clark and Steve DeRose. 1999. XML Path Lan-
guage (XPath) Version 1.0. W3C Recommendation,
November. http://www.w3.org/TR/xpath.

John Cowan and Richard Tobin. 2001. XML Information
Set. W3C Recommendation, October. http://www.
w3.org/TR/xml-infoset/.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon
Levy, and Dan Suciu. 1998. XML-QL: A Query Lan-
guage for XML. available as http://www.w3.org/
TR/NOTE-xml-ql, August. W3C Note.

D. McKelvie, A. Isard, A. Mengel, M. Grosse, and
M. Klien. 2001. The MATE Workbench - an annotation
tool for XML coded speech corpora. Speech Communi-
cation.

Jonathan Robie, Don Chamberlin, and Daniela Flo-
rescu. 2000. Quilt: An XML Query Language.
Presented at XMLEurope 2000, July. http:
//www.gca.org/papers/xmleurope2000/
papers/s08-01.html.

E. Teich, S. Hansen, and P Fankhauser. 2001. Repre-
senting and querying multi-layer annotated corpora. In
S. Bird, P. Buneman, and M. Liberman, editors, Pro-
ceedings of the IRCS Workshop on Linguistic Databases,
pages 228–237. http://www.ldc.upenn.edu/
annotation/databases.

Henry S. Thompson and David McKelvie. 1997. Hyper-
link semantics for standoff markup of read-only doc-
uments. In SGML Europe ’97. http://www.ltg.
ed.ac.uk/˜ht/sgmleu97.html.

	2055: 2055
	2056: 2056
	2057: 2057
	2058: 2058
	2059: 2059
	2060: 2060

