
Language Resources for Multi-Modal Dialogue Systems

Oliver Lemon and Alexander Gruenstein

Center for the Study of Langauge and Information
Stanford University

210 Panama Street, Stanford
CA 94305�

lemon,alexgru@csli.stanford.edu �
Abstract

This paper reviews a resource base of software agents for hub-based architectures, which can be used generally for advanced dialogue
systems research and deployment. The problem of domain-specificity of dialogue managers is discussed, and we describe an approach
to it developed at CSLI, involving a domain-general dialogue manager with application specific “Activity Models”. We also describe
relevant grammar development tools.

1. Introduction
The limited portability of dialogue-interfaces is cur-

rently a barrier to their development and more widespread
use. We present and demonstrate new resources developed
at CSLI1 and elsewhere which can be used (in tandem with
existing “off-the-shelf” components) to build multi-modal
dialogue systems for a range of applications, each bringing
their own activities and vocabulary to dialogues. We shall
show that a rich resource base of software agents now ex-
ists for hub-based architectures (e.g. Galaxy Communicator
(Seneff et al., 1998), OAA (Martin et al., 1999)), which can
be used generally for advanced dialogue systems research
and deployment.

In Section 3. we survey the components which are now
available, but we first discuss common approaches and
problems.

A variety of researchers have built “toolkits” for the
development of dialogue systems (e.g. the OGI Toolkit
(McTear, 1998), TrinidiKit (Larsson et al., 2000; Larsson
and Traum, 2000)), but these have been limited to simple
dialogues which are essentially pre-scripted by a developer,
either as Finite State Machines or Form-filling systems (e.g.
a list of questions to resolve in order to buy airline tickets).
However, some current research systems handle complex
non-scriptable dialogues which enable a human user to in-
teract with a device performing co-operative activities, such
as searching for objects (e.g. (Lemon et al., 2001a; Lemon
et al., 2001c)). The usual problem with such systems is
that their central component, the “Dialogue Manager”, is
application-specific, thus making them unsuitable candi-
dates for developer toolkits for more flexible and useful dia-
logue systems. For example, the Pegasus, Orion, Mercury,
and Jupiter systems developed at MIT (Zue et al., 1994;
Seneff, 2000; Seneff and Polifroni, 2000; Zue, 2000) each
have domain-specific dialogue managers, with around 350
rules each. The time and expertise needed to develop such
dialogue managers by hand prohibits more widespread de-
velopment and deployment of the technology.

1This research was (partially) funded under the Wallenberg
laboratory for research on Information Technology and Au-
tonomous Systems (WITAS) Project, Linköping University, by
the Wallenberg Foundation, Sweden.

Conceptually, however, it is clear that there is a domain-
independent level of conversational competence exhibited
by humans. For instance, a question deserves in answer, re-
gardless of what “domain” that question is about. Likewise,
a command or instruction changes conversational context
such that certain responses are responses to that utterance,
and others are not. Capturing this level of abstraction to
“speech acts” or “dialogue moves” computationally allows
us to build domain-general dialogue management tools (see
(Lemon et al., 2002 submitted), and Figure 1).

DIALOGUE

ACTIVITY
MOVE
TREE

AGENDA
SYSTEM TREE

BUFFER
MODALITY

PENDING
LIST

GROUPS

Activities)
(NPs,

(Selection and Aggregation)

SALIENCE

(Map
 gesture

inputs)
ACTIVITY

LAYER

speech
synthesis

Map Display

INFORMATION
INDEXICAL

CONVERSATIONAL MOVE INPUTS
(parsed human speech)

(Active Node List)

MESSAGE
GENERATION

ACTIVITY
MODEL

DEVICE

Figure 1: CSLI dialogue management system

CSLI’s dialogue manager architecture and code-base
enables the construction of dialogue systems for human di-
alogues with complex applications (e.g. the WITAS robotic
helicopter, intelligent tutoring systems). The core of
the system is a set of abstract Dialogue Move classes
(implemented in Java), such as ‘wh-question’ or ‘com-
mand’, which contain no application-specific information,
but which encode general conversational functions associ-
ated with particular speech acts (e.g. make a new NP the
most salient). This resource is used in dialogue manage-
ment to update conversational context, including building a
“Dialogue Move Tree” representing conversational threads.

But if dialogue-management is to be domain-general,
how does interaction with the underlying application take
place? We have abstracted a simple language (see Section

2.) for specifying the “Activities” that an application can
carry out (c.f. ‘recipes’ in COLLAGEN (Rich et al., 2001)),
such that a developer need only specify activities, together
with lexical cues for them, in order to “dialogue-enable” an
application. Similar work is underway by (Rayner et al.,
2002 in press). The next section outlines this idea.

2. Activity Models
The applications which we wish to “dialogue-enable”

using conversational interfaces are capable of performing
some basic activities or actions (possibly simultaneously).
Some applications know only how to carry out sequences
of atomic activities, in which case it is the dialogue sys-
tem’s job to decompose linguistically specified high-level
activities (e.g. “record the film on channel 4 tonight”) into
a sequence of appropriate basic actions for the device. In
this case a declarative “Activity Model” (see Figure 2) for
the application states how linguistically-specified activities
can be decomposed into sequences of atomic actions. This
model also states traditional planning and resource con-
straints such as preconditions and postconditions of actions.
In this way, a relatively “stupid” device (e.g. with little or
no planning capabilities) can be made into a more intelli-
gent device when it is dialogue-enabled.

We choose to focus on building this class of dialogue
systems because we share with (Allen et al., 2001), a ver-
sion of the the Practical Dialogue Hypothesis:

“The conversational competence required for
practical dialogues, although still complex, is sig-
nificantly simpler to achieve than general human
conversational competence.”

Of course, applications may be able to plan and ini-
tiate actions themselves. Dialogue is then also used to
re-specify constraints, revise activities, and monitor the
progress of tasks. We propose one representation and rea-
soning scheme to cover the spectrum of cases from applica-
tions with no planning capabilities to those exhibiting more
impressive AI. Both dialogue manager and application have
access to a single “Activity Tree” which is a shared (and
thus co-ordinated) representation of current and planned ac-
tivities and their execution status, involving temporal and
hierarchical ordering (in fact, one can think of the Activ-
ity Tree as a HTN for the application). Applications can
then use the full resources of the dialogue system to report
execution progress of activities, and engage the user in col-
laborative dialogue about them.

We now turn to a slection of available software agents
for building end-to-end dialogue systems.

3. Software Agents
A collection of resources (Dialogue Manager, Ac-

tivity Manager) and wrappers to “off-the-shelf” systems
(Speech Recognizer, Speech Synthesizer, Parser, Genera-
tor) has been developed at CSLI as a set of portable soft-
ware agents in Java, under the Open Agent Architecture
(OAA2).Agents are available at our website.

The core of the architecture is OAA’s “facilitator” which
manages asynchronous message passing between a number

facilitator
OAA2

Synthesizer

Generator

Gemini
Parser and

Recognizer
Speech
Nuance

Speech
Festival

Display
Interactive Map

NL

SR

TTS

DM

GUI
Activities

Model
Interface

DIALOGUE MANAGER

Dialogue Move Tree (DMT)
Activity Tree (AT)

System Agenda (SA)
Salience Groups (SG)

Pending List (PL)
Modality Buffer (MB)

ROBOT

Figure 3: The WITAS multi-modal dialogue system archi-
tecture

of software agents which are specialists in certain tasks, for
example speech recognition, database queries, or graphical
display. In our current system there are six main agents2

each responsible for various subtasks in the dialogue sys-
tem (see Figure 3):

1. NL (natural language): a Prolog wrapper to SRI’s
“Gemini” unification-based parser and generator, us-
ing a grammar for human-robot conversation devel-
oped at CSLI.

2. SR (speech recognizer): a Java wrapper to a Nuance
8 speech recognition server using a language model
compiled directly from the Gemini grammar (with
the consequences that every recognized utterance has
a logical form, and that every logical form can be
mapped to a surface string).

3. TTS (text-to-speech): a Java wrapper to the Festival
1.4.3 speech synthesiser (Black et al., 1999), for sys-
tem speech output.

4. GUI: an interactive map display of the current oper-
ating environment which displays route plans, way-
points, locations of vehicles including the robot, and
allows deictic reference (i.e. mouse pointing) by the
user.

5. DM (dialogue manager): co-ordinates multi-modal
inputs from the user, interprets dialogue moves made
by the user and application, updates and maintains the
dialogue context, handles reports and questions, and
sends speech and graphical outputs to the user (Java).

6. Activity Layer: translates commands and queries from
the dialogue interface into commands and queries to
the back-end application, and vice-versa for reports
and queries received from the application. Uses an Ac-
tivity Model (see Section 2.) and a realtime CORBA
communication layer (Java, JaCORB).

2All are implemented in Java, but for the NL agent (Prolog).

Figure 2: A “Locate” Activity Model for a robot, exhibiting collaborative dialogue

task Locate // locate is "find-by-type", collaborative activity.
// Breaks find into subactivities: watch_for, follow, ask_complete.

{ResourcesUsed {camera;} // will be checked for conflicts.
PreConditions //check truth of KIF statements.

{(Status flight inair) (Status engine ok) (Status fuel ok);}
SkipConditions // skip this Activity if KIF condition true.

{(Status locked-on THIS.np);}
PostConditions// assert these KIF statements when completed.

{(Status locked-on THIS.np) ;}
Children SEQ //sequential sub-activities.

{TaskProperties
{command = "watch_for"; // basic robot action ---

np = THIS.np;} // set sensors to search.
TaskProperties

{command = "follow_phobj";//triggers another complex activity
np = THIS.np;} // following a candidate object.

TaskProperties // collaborative dialogue action:
{command = "ask_complete";// asks user whether this is

np = THIS.np; }}} // the object we are looking for.

Although the GUI map and database is domain specific, the
methods used in the system to determine the reference of
GUI gestures (mouse clicks) are general, and can be re-
used in a variety of contexts3. Variants of some of these
components have been used in other dialogue systems, no-
tably SRI’s CommandTalk (Stent et al., 1999), the NASA
Personal Satellite Assistant (Rayner et al., 2000), and the
robot control system of (Guzzoni et al., 1996).

As well as the components mentioned above, the fol-
lowing components also have wrappers developed for use
in dialogue systems development under OAA (this is not a
full listing, but is as comprehensive as I can be at the time
of writing)4:

� Java Theorem Prover (Java, CSLI)

� SNARK theorem prover (Stickel et al., 2000) (Lisp,
SRI)

� IBM ViaVoice speech synthesizer (C, SRI)

� Bliksem theorem prover for first-order logic, translates
Discourse Representation Structures (DRS) to first-
order formulae (Prolog, HCRC)

� Spass theorem prover for first-order logic, translates
DRS to first-order formulae (Prolog, HCRC)

� Dipper Dialogue Move Engine (Prolog, HCRC)

� Finder, model builder for first-order logic, inputs are
DRS (Prolog, HCRC)

3e.g. any application where items are selected by point-and-
click gestures. Dragging and dropping would be nice to add.

4Where possible I note in parentheses the language used and
the institution at which the work is based.

� MACE, model-builder for first-order logic, inputs are
DRS (Prolog, HCRC)

� Heyu, X-10 device control interface (HCRC)
� Left corner parser (Prolog, HCRC)
� Racer, decription logic theorem prover (Prolog,

HCRC)
� TrindiKit dialogue management toolkit (Larsson and

Traum, 2000) (Prolog, Gothenburg University)

The main sites for these efforts have been SRI, the NASA
Rialist group, HCRC (Edinburgh), Gothenburg University
(Department of Linguistics), and CSLI (Stanford Univer-
sity).

Various components also exist for the Galaxy Com-
municator hub architecture. See the Galaxy Communica-
tor “Open Source Toolkit” at http://communicator.
sourceforge.net/download/index.html. This
includes:

� JSAPI wrapper for IBM ViaVoice or other JSAPI-
compliant recognizers

� wrapper for Sphinx speech recognizer
� wrapper for Phoenix parser
� wrappers for Festival, TrueTalk speech synthesizers
� MITRE dialogue manager

3.1. Grammar Compilation
In terms of grammar development, there are also a num-

ber of compilers, for converting Unification Grammars (e.g.
developed in Gemini) into context free grammars which can
be used to build language models for Nuance speech recog-
nition. For example:

� Regulus (Rayner et al., 2001)

� Kiefer and Kreiger (Kiefer and Krieger, 2000)

� Gemini (Dowding et al., 1993)

� UNIANCE5

Papers investigating this issue are (Moore, 1998; Dowd-
ing et al., 2001; Rayner et al., 2001). The virtue of this
process is that developers need only write one unifica-
tion grammar for the application, which can be used in
three ways: interpretation, generation (if the system is bi-
directional), and speech recognition.

Another challenge is that multiple application-specific
grammars are often used for parsing, generation, and
speech recognition. Recent developments in “plug-and-
play” grammars (Rayner et al., 2002 in press) allow appli-
cations and devices to bring their own specific vocabulary
and grammar rules to a domain general “core” grammar,
and use them on the fly.

4. Conclusion
We described a number of software resources available

for advanced dialogue systems research and deployment.
These include hub architectures, parsers, speech recogniz-
ers, speech synthesizers, dialogue managers, and toolkits,
as well as development tools such as software for compiling
unification grammars to context-free grammars for speech
recognition.

At CSLI, these tools have been used to rapidly proto-
type dialogue systems for interaction with intelligent au-
tonomous devices such as mobile robots (Lemon et al.,
2001c) and intelligent tutoring systems (Clark et al., 2001).

We also discussed the problem of domain-specificity of
dialogue systems – a problem which is especially acute in
the core area of dialogue management. We outlined the ap-
proach taken to this at CSLI, based on the representation
of domain-specific “activity models” for devices, applica-
tions, or services. This allows dialogue management to be
handled in a general fashion, in our case using abstract “di-
alogue move” classes to build and update a “dialogue move
tree” representing dynamic dialogue context.

More information and demos see http:
//www-csli.stanford.edu/semlab/witas/
Other applications include interaction with avatars and
computer-generated characters in video games (Lemon,
2002).

Acknowledgements
With thanks to John Dowding (NASA Rialist), Beth-

Ann Hockey (NASA Rialist), Stina Ericsson (Gothenburg),
Johan Bos (HCRC), Staffan Larsson (Gothenburg), Stanley
Peters (CSLI).

5See http://www.iccs.informatics.ed.ac.uk/
˜jbos/systems.html

5. References
James F. Allen, Bradford W. Miller, Eric K. Ringger, and

Teresa Sikorski. 1996. A robust system for natural spo-
ken dialogue. In Proceedings of ACL.

James Allen, Donna Byron, Myroslva Dzikovska, George
Ferguson, Lucian Galescu, and Amanda Stent. 2001.
Toward conversational human-computer interaction. AI
Magazine, 22(4):27–37.

Alan Black, Paul Taylor, and Richard Caley. 1999.
The Festival Speech Synthesis system. http://www.
cstr.ed.ac.uk/projects/festival/.

Peter Bohlin, Robin Cooper, Elisabet Engdahl, and Staffan
Larsson. 1999. Information states and dialog move en-
gines. Electronic Transactions in AI. Website with com-
mentaries: www.etaij.org.

Brady Clark, John Fry, Matt Ginzton, Stanley Peters,
Heather Pon-Barry, and Zachary Thomsen-Gray. 2001.
Automated tutoring dialogues for training in shipboard
damage control. In Proceedings of SIGDIAL 2001.

Robin Cooper and Staffan Larsson. 1998. Dialog moves
and information states. Technical Report 98-6, Goteborg
University. Gothenburg papers in Computational Lin-
guistics.

John Dowding, Jean Mark Gawron, Doug Appelt, John
Bear, Lynn Cherny, Robert Moore, and Douglas Moran.
1993. GEMINI: a natural language system for spoken-
language understanding. In Proc. 31st Annual Meeting
of the ACL.

J. Dowding, B.A. Hockey, M. J. Gawron, and C. Culy.
2001. Practical issues in compiling typed unification
grammars for speech recognition. In Proceedings of the
Thirty-Ninth Annual Meeting of the Association for Com-
puational Linguistics.

Renee Elio and Afsaneh Haddadi. 1999. On abstract
task models and conversation policies. In Workshop on
Specifying and Implementing Conversation Policies, Au-
tonomous Agents’99, Seattle.

John Fry, Hideki Asoh, and Toshihiro Matsui. 1998. Nat-
ural dialogue with the Jijo-2 office robot. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems IROS-98, pages 1278–1283, Victoria, B.C., Canada.
(See www-csli.stanford.edu/semlab/juno).

Dafydd Gibbon, Inge Mertins, and Roger Moore. 2000.
Handbook of Spoken and Multi-modal Dialogue Sys-
tems. Kluwer.

Didier Guzzoni, Adam Cheyer, Luc Julia, and Kurt Kono-
lige. 1996. Many robots make short work. In AAAI
Robotics Contest, Menlo Park, CA. SRI International,
AAAI Press.

B. Kiefer and H. Krieger. 2000. A context-free approxi-
mation of head-driven phrase structure grammar. In Pro-
ceedings of 6th International Workshop on Parsing Tech-
nologies, pages 135–146.

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the TRINDI Dialogue
Move Engine Toolkit. Natural Language Engineering,
6(3-4):323–340.

S. Larsson, P. Bohlin, J. Bos, and D. Traum. 2000.

TRINDIKIT 1.0 Manual. Technical report, University of
Gothenburg.

Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou,
Johan Bos, and Ewan Klein. 2001. Training personal
robots using natural language instruction. IEEE Intelli-
gent Systems.

Oliver Lemon, Anne Bracy, Alexander Gruenstein, and
Stanley Peters. 2001a. Information states in a multi-
modal dialogue system for human-robot conversation. In
Peter Kühnlein, Hans Reiser, and Henk Zeevat, editors,
5th Workshop on Formal Semantics and Pragmatics of
Dialogue (Bi-Dialog 2001), pages 57 – 67.

Oliver Lemon, Anne Bracy, Alexander Gruenstein, and
Stanley Peters. 2001b. A multi-modal dialogue sys-
tem for human-robot conversation. In Proceedings of
North American Association for Computational Linguis-
tics (NAACL 2001).

Oliver Lemon, Anne Bracy, Alexander Gruenstein, and
Stanley Peters. 2001c. The WITAS Multi-Modal Dia-
logue System I. In Proceedings of 7th European Con-
ference on Speech Communication and Technology (Eu-
rospeech’ 01), Aalborg.

Oliver Lemon, Alexander Gruenstein, and Stanley Peters.
2002 (submitted). Collaborative actvities and multi-
tasking in dialogue systems. Traitement Automatique
des Langues (TAL). Special Issue on Dialogue.

Oliver Lemon. 2002. Transferable multi-modal dialogue
systems for interactive entertainment. In AAAI Spring
Symposium on Artificial Intelligence in Interactive En-
tertainment, Technical Report SS-02-01, pages 57 – 61,
Menlo Park, CA. AAAI Press.

Diane Litman, Micheal Kearns, Satinder Singh, and Mar-
ilyn Walker. 2000. Automatic optimization of dialogue
management. In Proceedings of COLING 2000.

Susann LuperFoy, Dan Loehr, David Duff, Keith Miller,
Florence Reeder, and Lisa Harper. 1998. An archi-
tecture for dialogue management, context tracking, and
pragmatic adaptation in spoken dialogue systems. In
COLING-ACL, pages 794 – 801.

David Martin, Adam Cheyer, and Douglas Moran. 1999.
The Open Agent Architecture: a framework for building
distributed software systems. Applied Artificial Intelli-
gence: An International Journal, 13(1-2).

M. McTear. 1998. Modelling spoken dialogues with state
transition diagrams: Experiences with the CSLU toolkit.
In Proc 5th International Conference on Spoken Lan-
guage Processing.

R. Moore. 1998. Using natural language knowledge
sources in speech recognition. In Proceedings of the
NATO Advanced Studies Institute.

Douglas Moran, Adam Cheyer, Luc Julia, David Martin,
and Sangkyu Park. 1997. Multimodal user interfaces in
the Open Agent Architecture. In Proc IUI 97, pages 61
– 68.

Nuance. 2000. http://www.nuance.com.
James Pittman, Ira Smith, Phil Cohen, Sharon Oviatt, and

Tzu-Chieh Yang. 1996. Quickset: a multimodal inter-
face for military simulation. In Proceedings of the Sixth

Conference on Computer Generated Forces and Behav-
ioral Representation, Orlando, pages 217–224.

Manny Rayner, Beth Ann Hockey, and Frankie James.
2000. A compact architecture for dialogue management
based on scripts and meta-outputs. In Proceedings of Ap-
plied Natural Language Processing (ANLP).

M. Rayner, J. Dowding, and B.A. Hockey. 2001. A base-
line method for compiling typed unification grammars
into context free language models. In Proceedings of Eu-
roSpeech.

Manny Rayner, John Boye, Ian Lewin, and Genevieve Gor-
rel. 2002 (in press). Plug and play spoken dialogue pro-
cessing. In SIGdial 2001 book. Kluwer.

Charles Rich, Candace Sidner, and Neal Lesh. 2001. Col-
lagen: applying collaborative discourse theory to human-
computer interaction. AI Magazine, 22(4):15–25.

Nicholas Roy, Joelle Pineau, and Sebastian Thrun. 2000.
Spoken dialog management for robots. In Proceedings
of ACL 2000.

S. Seneff and J. Polifroni. 2000. Formal and natural lan-
guage generation in the mercury conversational system.

S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue.
1998. Galaxy-ii: A reference architecture for conversa-
tional system development. In Proceedings of ICSLP.

Stephanie Seneff. 2000. Orion: From on-line interaction
to off-line delegation. In Proc. 6th International Confer-
ence on Spoken Language Processing.

Amanda Stent, John Dowding, Jean Mark Gawron, Eliz-
abeth Owen Bratt, and Robert Moore. 1999. The Com-
mandTalk spoken dialogue system. In Proceedings of the
Thirty-Seventh Annual Meeting of the ACL, pages 183–
190, University of Maryland, College Park, MD. Associ-
ation for Computational Linguistics.

Mark E. Stickel, Richard J. Waldinger, and Vinay K.
Chaudhri. 2000. A Guide to SNARK. Technical
Note Unassigned, AI Center, SRI International, 333
Ravenswood Ave., Menlo Park, CA 94025, May.

Wei Xu and Alexander Rudnicky. 2000. Task-based di-
alog management using an agenda. In Proceedings of
ANLP/NAACL 2000 Workshop on Conversational Sys-
tems, pages 42–47.

V. Zue, S. Seneff, J. Polifroni, M. Phillips, C. Pao, D. God-
deau, J. Glass, E., and Brill. 1994. PEGASUS: A spo-
ken language interface for on-line air travel planning.
In Proc. ARPA Human Language Technology Workshop
’94, Princeton, NJ.

V. Zue. 2000. Jupiter: A telephone-based conversational
interface for weather information.

	188: 188
	189: 189
	190: 190
	191: 191
	192: 192

