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Abstract
In this paper we describe an improved algorithm for the automatic segmentation of speech corpora. Apart from their usefulness in several
speech technology domains, segmentations provide easy access to speech corpora by using time stamps to couple the orthographic
transcription to the speech signal. The segmentation tool we propose is based on the Forward-Backward algorithm. The Forward-Back-
ward method not only produces more accurate segmentation results than the traditionally used Viterbi method, it also provides us with a
confidence interval for each of the generated boundaries. These confidence intervals allow us to perform some advanced post-processing
operations, leading to further improvement of the quality of automatic segmentations.

1. Introduction

This paper describes a novel approach to the automatic
segmentation of speech corpora. Automatic segmenta-
tions of speech, on phoneme level (eg. TIMIT) or word
level (eg. CGN, Switchboard), are a standard annotation
within speech corpora. In segmented speech corpora, the
phonemes or words are coupled to their corresponding seg-
ment in the speech signal by means of time stamps. Speech
technologists apply segmentations in the bootstrapping pro-
cess for training acoustic ASR models, in the development
of TTS systems and within speech research in general. For
other users, segmentations provide fast and easy access to
audio fragments of words or phoneme sequences in the cor-
pus. Some speech corpora provide only automatic segmen-
tations, thus requiring a highly accurate segmentation al-
gorithm. In other corpora speech segmentations are also
checked manually. Since this manual procedure is time-
consuming and thus expensive, it is important to base the
manual work on an already accurate automatic segmenta-
tion in order to speed up the verification process. So in
both cases an automatic segmentation procedure producing
high-quality output is necessary.

In the literature several systems for automatically gener-
ating speech data segmentations have been described. Most
of them have been applied to databases for TTS systems.
Some of the methods described in the literature are based
on specific acoustic cues or features for the segmentation
task (Vorstermans et al., 1996; van Santen and Sproat,
1999; Husson, 1999) focusing for instance on transient be-
haviour or specific differences between phoneme classes.
Others use general features and acoustic modelling which
are common in ASR (Ljolje and Riley, 1991; Beringer and
Schiel, 1999). The method we present here is of the latter
type.

Speech segmentation systems typically take both the
speech signal and its phonemic transcription as input. The
phonemic transcription may be generated manually (as is
the case in our experiments) or may be automatically de-
rived from the orthographic transcription and a phonemic
dictionary.

In this paper we focus on automatic segmentation de-

duced from the Forward-Backward algorithm. Forward-
Backward segmentation outperforms Viterbi segmentation
in two important respects. First, we performed a set of
experiments in which automatic segmentations (based on
Viterbi and Forward-Backward respectively) were com-
pared to manually checked reference segmentations, show-
ing that the Forward-Backward algorithm generates more
accurate segmentations than the Viterbi algorithm. Second,
Forward-Backward segmentation provides us with a confi-
dence interval for each generated boundary (Laureys et al.,
2001). The application of confidence intervals to automatic
segmentation is novel and has a potentially wide-ranging
applicability. In view of the topic of this paper, we success-
fully applied the confidence intervals to an advanced post-
processing procedure which further improves the automatic
segmentations.

The paper is organised as follows. In section2., we
explain how an automatic segmentation is generated and
describe both the Viterbi algorithm and the Forward-Back-
ward algorithm. In addition, we focus on the confidence
intervals and on how we applied them to obtain more ac-
curate segmentations. Section3. presents the set-up for our
experiments and discusses the results. We end with conclu-
sions and suggestions for future research.

2. Automatic Segmentation of Speech
Automatic segmentation of speech is based on the fol-

lowing process. First, the phonemes in the input phonemic
transcription are coupled to their respective acoustic Hid-
den Markov Models (HMMs). The acoustic properties of
the HMM statessi are modelled by means of observation
density functionsfi(x) = f(x | si), x being the feature
vector that describes a given speech frame at 10 ms inter-
vals. The duration and possible order of the states are gov-
erned by the transition probabilities between those states
aij = p(sj | si). The HMM phoneme models typically
have three states and a left-to-right topology, as illustrated
in figure1.

Once the acoustic properties of the different phones
have been encoded in statistical models, sentence models
are generated by concatenating all relevant phoneme mod-
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Figure 1: A phoneme model with three states and a left-to-
right topology.

els (see figure2). Next, the speech data are assigned (hard
or soft, by respectively Viterbi or Forward-Backward) to
the acoustic model of the complete phoneme sequence, still
adhering to the left-to-right constraints of the model.
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Figure 2: A model for a complete sentence made by con-
catenating the appropriate phoneme models.

2.1. Viterbi Segmentation

Traditionally, the Viterbi algorithm is used to find the
single best path through the model given the observed
speech signalxT1 (the sequence of feature vectors corre-
sponding to the speech signal):

sTi = arg max
sTi ⊂S

T∏
i=1

f(xi | si)p(si | si−1),

with sTi a sequence of HMM states (one state for each time
frame) that is consistent with the sentence modelS, T be-
ing the number of time frames. Thus, the Viterbi algorithm
results in the segmentation which reaches maximum likeli-
hood for the given feature vectors.

2.2. Forward-Backward Segmentation

Unfortunately, Viterbi’s maximum likelihood assign-
ment is only sub-optimal in that it does not necessarily gen-
erate the boundary that is closest to the position where the
boundary is expected given the speech signal and the acous-
tic models. That is, the Viterbi algorithm only provides us
with an approximation of the quantity that is really looked
for. This is illustrated in figure3. The Viterbi algorithm
generates the boundary corresponding to (1), whereas the
optimal boundary corresponds to (2).
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Figure 3: Maximum likelihood vs. least squares estimate
for boundary.

To find the best possible estimate of the boundary in a
least squares sense the probability function of each bound-
ary must be calculated:

P (b|S, xT1 ) =
f(xb1|Sl)f(xTb+1|Sr)

f(xT1 |S)
,

with

f(xba|Sx) =
∑
sba⊂Sx

b∏
i=a

f(xi|si)1/βp(si|si−1)1/β .

In the above equations, sentenceS (the sequence of
HMM states) is divided in partSl left and partSr right
of the boundary of interest. The extra parameterβ com-
pensates for the ill-matched assumption made by HMMs
that the observationsxi are independent. The optimal value
for β in our experiments was 10, but its exact value was
not at all critical (a broad optimum). The same compen-
sation factor—with approximately the same value—can be
found in recognition systems (Demuynck, 2001) as well as
in confidence scoring of recognized words (Wessel et al.,
2001). In these two cases, its function is to balance the
contributions of acoustic model and language model to the
total likelihood of the sentence.

Calculating the density functions for all boundaries in
a sentence can be done efficiently with the Forward-Back-
ward algorithm. Given the probability density function of
each boundary, the least squares estimate now equals:

E{b} =
T∑
b=1

P (b|S, xT1 ) b.

2.3. Confidence Intervals for Segmentation

Since the Forward-Backward algorithm computes the
probability density function for each boundary, we can re-
gard the variance of this function as a confidence interval
for the respective boundary:



Var(b) =
T∑
b=1

p(b | S, xT1 )(b− E{b})2.

We assume that these confidence intervals can be use-
ful in several types of applications. For example, in TTS
systems segments with small confidence intervals on both
segment boundaries could be preferred in the segment se-
lection. In the context of this paper’s topic, we successfully
incorporated the intervals in a post-processing procedure
aimed at removing biases between automatic and manual
segmentations.

The forementioned biases are dependent on the classes
of the phonemes left and right of the boundary, and can
be attributed to the fact that humans use different cues
than HMMs for finding the boundary between consecutive
phonemes (van Santen and Sproat, 1999). For the transition
to a vowel, for example, the average difference between au-
tomatic and manual segmentation can be more than halved
when compensating for these biases. An equally big im-
provement can be obtained for the transitions to noise. In
section3.we will show that optimal compensation for these
biases can be calculated as a function of confidence inter-
vals.

3. Experiments
3.1. Description

The automatic segmentation and the confidence inter-
vals were evaluated on part of the read aloud data in the cur-
rently developed Spoken Dutch Corpus (CGN) (Oostdijk,
2000). Read aloud text accounts for the ‘cleanest’ speech
within the corpus. The automatic segmentation started from
manually created chunks (2 to 6 seconds of speech bounded
by silence) provided by the corpus. In our experiments the
test set consisted of 13958 words, resulting in 17774 bound-
aries since pauses exceeding 50 ms were also part of the
segmentation.

We based the evaluation of the automatic word segmen-
tations on a comparison with corresponding manual word
segmentations. The choice for evaluating on word seg-
mentations was motivated by the function of segmentations
within the Spoken Dutch Corpus project: providing easy
access to the words in the speech corpus.

First, the words in the test set were segmented man-
ually by two persons. They were instructed to use audi-
ble cues only and to position boundaries so that each word
would sound acoustically acceptable in isolation, i.e. could
be played back without hearing (part of) the phonemes of
the preceding or following word. Shared phonemes at the
boundary (e.g. he issad) were split in the middle, except
for shared plosives (e.g. stopplease), which were isolated
altogether. Noticeable pauses (> 50 ms) were segmented
in the same way as words, thus producing empty chunks.

Then, the automatic segmentations were evaluated by
counting the number of boundaries for which the devia-
tion between automatic and manual segmentation exceeded
thresholds of 35, 70 and 100 ms. To evaluate the confi-
dence intervals, the number of non-detected deviations that

no of deviations exceeding no of
35 ms 70 ms 100 ms boundaries

Viterbi segmentation (base segmentation)
2184 552 229 17774

Forward-Backward segmentation
2102 490 182 17774
rel. improvement w.r.t. base segmentation
3.8% 11.2% 20.5% 17774

Table 1: Viterbi vs. Forward-Backward.

exceeded 35, 70 and 100 ms were counted if 50% or 30% of
the boundaries with the largest confidence intervals would
have been checked manually.

For the experiments we used the large vocabulary con-
tinuous speech recognition system developed by the ESAT-
PSI speech group at the K.U.Leuven. The system’s context-
dependent acoustic models (partially tied gaussians) were
estimated on a database with 6 hours of dictated speech
in Flemish Dutch. The speakers in this database did not
occur in the test data for the experiments. A detailed
overview of the context-dependent acoustic modeling can
be found in (Duchateau, 1998), the search module is de-
scribed in (Demuynck, 2001; Demuynck et al., 2000).

3.2. Discussion

Table1 compares Viterbi and Forward-Backward seg-
mentations. It shows that Forward-Backward segmentation
has a significant relative improvement over Viterbi segmen-
tation. It is important to notice that especially the number
of large errors (> 100 ms) is reduced by more than 20%.

As explained in section2.3., there are some (phoneme-
dependent) biases between automatic and manual segmen-
tations. We discerned 9 phoneme classes in total and anal-
ysed the biases on the boundary position between each pair
of classes. Those biases in the Forward-Backward segmen-
tations were removed in a post-processing step, as will be
explained next.

In a first step, we shifted the boundaries purely on the
basis of the average biases. As is shown in the top part of ta-
ble2, this again resulted in a more accurate segmentation.In
a second step, we compensated for the biases in a more ad-
vanced way. The bottom part of table2 shows results for
shifting the boundary while taking into account the confi-
dence interval for this boundary. More precisely, the bias
was estimated as a function on the boundary’s confidence
interval. This function was determined empirically with a
polynomial fit on a test set. The improvement shows that
confidence intervals are useful when determining the opti-
mal boundary shift: large intervals (large variances) typi-
cally correspond to large shifts.

The majority of the remaining random (or hard to pre-
dict) deviations in the automatic post-processed segmenta-
tions are transitions to and from noise and transitions to
unvoiced plosives (45%, 11% and 15% of the remaining 35
ms errors respectively). Since these boundaries also show
large variation between the corresponding manual segmen-
tations of different correctors, we cannot expect an auto-



no of deviations exceeding no of
35 ms 70 ms 100 ms boundaries

after post-processing, excl. conf. intervals
1969 390 163 17774

rel. improvement w.r.t. base segm., excl. conf. intervals
9.8% 29.3% 28.8% 17774

after post-processing, incl. conf. intervals
1928 359 147 17774
rel. improvement w.r.t. base segm., incl. conf. intervals
11.7% 35.0% 35.8% 17774

Table 2: Results after post-processing.

confidence no of non-detected no of
level deviations exceeding boundaries

35 ms 70 ms 100 ms

confidence intervals
50% 439 58 11 8887
30% 805 108 23 5332

Table 3: Evaluation of confidence intervals.

matic system to give more consistent results.
Finally, table3 evaluates the confidence intervals in the

way described in section3.1.. As such, these results are
not yet good enough to speed up the work of a manual
segmenter by flagging only the least probable boundaries.
Even if 50% of the boundaries were to be verified, 7% of the
100 ms deviations and 23% of the 35 ms deviations would
still be overlooked. Yet, as shown above, the confidence in-
tervals are accurate enough for advanced post-processing.

4. Conclusions and Future Research
We presented an improved algorithm for the auto-

matic segmentation of speech corpora based on the For-
ward-Backward algorithm. We found that automatic For-
ward-Backward segmentation produces more accurate re-
sults than the more traditionally used Viterbi segmentation.
Moreover, the variances of the probability functions (cal-
culated for each boundary by the Forward-Backward al-
gorithm) can be considered confidence intervals on the re-
spective boundaries. Experiments showed that the confi-
dence intervals are useful when compensating for the bi-
ases between HMM-based and manual segmentations, thus
improving the quality of automatic segmentations even fur-
ther. Since the post-processed Forward-Backward word
segmentations clearly outperform Viterbi word segmenta-
tions, we plan to adopt them as word segmentations in the
creation of the Flemish part of the Spoken Dutch Corpus,
both as the basis for manual verification (performed on part
of the data) and as the automatic word segmentations for
the complete Flemish corpus part.

Future research will focus on the evaluation of the
Forward-Backward segmentation algorithm on ‘more chal-
lenging’ parts of the Spoken Dutch Corpus (containing
background noise, overlapping voices, . . . ). In addition, re-
search will be conducted on the development of advanced

methods for the production of reliable automatic segmenta-
tions based on automatically generated phonemic transcrip-
tions (derived from the orthographic transcription). Finally,
we will look into a further optimisation and application of
confidence intervals for segmentation with the aim of con-
siderably speeding up the segmenter’s manual task.
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