
���������	�
�����
����
���������
��������	�����������������
�������
����

�������	������ !�"��
��	����"������#"
�"���$����%
��	�����������&�	�������������
 

Faculty of Computer Science 
University of the Basque Country (UPV/EHU) 

649 p.k., 20080 Donostia (The Basque Country) 
jiparzux@si.ehu.es 

�'�������
In this paper we present the strategy used for an integration, in a common framework, of the NLP tools developed for Basque during 
the last ten years. The documents used as input and output of the different tools contain TEI-conformant feature structures (FS) coded 
in SGML. These FSs describe the linguistic information that is exchanged among the integrated analysis tools. 
The tools integrated until now are a lexical database, a tokenizer, a wide-coverage morphosyntactic analyzer, and a general purpose 
tagger/lemmatizer. In the future we plan to integrate a shallow syntactic parser. 
Due to the complexity of the information to be exchanged among the different tools, FSs are used to represent it. Feature structures are 
coded following the TEI’s DTD for FSs, and Feature Structure Definition descriptions (FSD) have been thoroughly defined. 
The use of SGML for encoding the I/O streams flowing between programs forces us to formally describe the mark-up, and provides 
software to check that these mark-up hold invariantly in an annotated corpus. 
A library of Abstract Data Types representing the objects needed for the communication between the tools has been designed and 
implemented. It offers the necessary operations to get the information from an SGML document containing FSs, and to produce the 
corresponding output according to a well-defined FSD. 
 

(�� ��������������
In this paper we present a strategy followed for the 

integration of different NLP tools developed for Basque 
during the last ten years in the IXA research group1. 

SGML, the Standard Generalized Markup Language, 
provides us with a well-formalized basis for the exchange 
of linguistic information among the different text analysis 
tools. TEI-P3 conformant feature structures (Sperberg-
McQueen & Burnard, 1994) constitute the representation 
schema for the different documents that convey the 
information from one linguistic tool to the next in the 
analysis chain. So, SGML-coded documents are used as 
input and output of the integrated tools.  

SGML is a well-defined standard for representing 
structured documents. Its value consists of the fact that it 
closes off the option of a proliferation of ad-hoc notations 
and the associated software needed to read and write 
them. The most important reason for using SGML to 
encode the I/O streams between programs is that it forces 
us to formally describe the mark-up used, and that there 
exists software to check that these mark-up invariants hold 
in an annotated corpus. 

The tools integrated so far are: 
1. EDBL, a lexical database for Basque, which at the 

moment contains more than 75,000 entries 
(Aduriz ������, 1998a). 

2. A tokenizer that identifies tokens from the input 
text. 

3. ��	
���
, a wide-coverage morphosyntactic 
analyzer for Basque (Alegria ��� ���, 1996). It 
attaches to each input word form all its possible 
interpretations. The result is a set of possible 
morphosyntactic readings of a word in which each 
morpheme is associated with its corresponding 
features in the lexicon: category, subcategory, 
declension case, number, and definiteness, as well 
as its syntactic function (Karlsson ��� ���, 1995) 

                                                      
1 URL: http://ixa.si.ehu.es 

and some semantic features. It is composed of 
several modules such as: 
• A segmentizer, which splits up a word into its 

constituent morphemes. 
• A morphosyntactic analyzer (Aduriz ��� ���, 

2000), whose goal is to group the 
morphological information associated with 
each morpheme obtaining the morphological 
information of the word form considered as a 
unit. This is an important step in our analysis 
process due to the agglutinative character of 
Basque. 

• A recognizer of multiword lexical units 
(MWLUs), which performs the 
morphosyntactic analysis of multiword units 
present in the text (Aduriz ������, 1996). 

4. ��
���, a general-purpose tagger/lemmatizer. 
(Ezeiza ������, 1998).  

Tokenization

M o r p h o l o g i c a l
S e g m e n t a t i o n

M o r p h o s y n t a c t i c
T r e a t m e n t

T r e a t m e n t  o f
M W L U s

M o r p h o s y n t a c t i c
T r e a t m e n t  o f

M W L U s

( X V / H P

( l e m m a t i z e r )

T e x t
( S G M L )

S e g m e n t a t i o n s

M o r p h o s y n t a c t i c
A n a l y s e s

L e m m a t i z a t i o n s

M W L U s ’
S t r u c t u r e

T o k e n i z e d
T e x t

G e n e r a l
L e x i c o n

M W L U s ’
L e x i c o n

0RUSKHXV

 

Figure 1. Information flow between the linguistic analysis 
tools. 



In the future we plan to integrate other tools currently 
under development, such as a shallow syntactic analyzer, 
a lexical disambiguator, etc. (Aduriz ������, 1998b). 

The main goals of this methodology of integration are 
twofold. Firstly, to formally define the input and output 
formats for the whole linguistic analysis chain. Secondly, 
we would like to propose a formal and standardized 

framework for the exchange of information that will make 
effective the communication between the analysis tools. 

The information flow between the different tools in the 
chain is shown in Figure 1. Having an SGML-tagged text 
as the input document, the tokenizer produces, as output, 
the list of tokens identified in the input text (����������
�����in the figure). 

<p>   <!-------------- kartera, non-standard noun unit --------------------> 
  <IV�W\SH �1RXQV�> 
    <f name=".H\"> 
      <fs type="Key"> 
        <f name="Entry"><str>kartera</str></f> 
        <f name="Homograph-Id"><nbr value="0"></f> 
      </fs> 
    </f> 
    <f name="326"><sym value="NOUN"></f> 
    <f name="6WDQGDUGL]DWLRQ�6WDWXV"> 
      <fs type="Non-Standard-FS"> 
        <f name="Non-Standard-Code"><sym value="LD_MA"</f> 
        <f name="Variant"><minus></f> 
        <f name="Corresponding-Standards" org="set"> 
          <fs type="Key"> 
            <f name="Entry"><str>diru-zorro</str></f> 
            <f name="Homograph-Id"><nbr value="0"></f> 
          </fs> 
        ... 
        </f> 
      </fs> 
    </f> 
    <f name="6WUXFWXUH"> 
      <fs type="OneWordUnit-Features-FS"> 
        <f name="Morphotactics" org="set"> 
          <fs type="Morphotactics-FS"> 
            <f name="TWOL-Form"><str>karterA</str></f> 
            <f name="Continuation-Class"><str>I</str></f> 
            <f name="Lexicon"><str>et_izenak</str></f> 
          </fs> 
        </f> 
      </fs> 
    </f> 
    <f name="1RXQ�)HDWXUHV"> 
      <fs type="Noun-Features-FS"> 
        <f name="SUBCAT"><sym value="COMMON"></f> 
        <f name="ANIM"><minus></f> 
        <f name="COUNT"><plus></f> 
        <f name="MEAS"><plus></f> 
        <f name="PLU"><minus></f> 
      </fs> 
    </f> 
  </fs> 
</p>  <!------------------------ kartera -----------------------------> 

Figure 2. Output of the unit ��	��	� (non-standard Basque for ������) as exported from the lexical database. 

The main source of lexical information in the system is 
the lexical database, which is considered as a permanent 
store developed and maintained by an independent 
process. The lexical information in the database needs to 
be extracted so as to compile it into ��	
���
� or any 
other program that might need it. Hence, the output of the 
lexical database is carried out in two steps, so 
distinguishing the exportation of the general lexicon 
(single-word units) and that of MWLUs (Figure 1)2. 

The segmentizer in ��	
���
, taking as input the 
general lexicon exported from EDBL, performs the 
morphological segmentation of the input text, splitting up 

                                                      
2 As can be seen in Figure 1, the MWLUs’ lexicon is already 
needed in the Morphological Segmentation process, in order to 
be able to recognize in the text MWLU’s constituents that are 
not by themselves entries of the lexical database. 

each token into its constituent morphemes. A more 
comprehensive morphosyntactic treatment of words 
follows the segmentation process and, finally, multiword 
lexical units are treated in two stages (�	�������� ���
����
� and ��	
��
��������� �	�������� ��� ����
), 
taking as input in this case the MWLUs’ lexicon. 

Finally, the general-purpose lemmatizer, ��
���, 
refines the previous documents eliminating contextually 
incorrect analyses and reducing the ambiguity on single 
and multiword units. 

)�� *�����

����
���������
��������
������
�
����	
&�	������������
���������

Due to the complexity of the information to be 
represented we decided to use feature structures. The use 
of feature structures quickly spread to other domains 
within linguistics since Jakobson (1949) first used them 



for the representation of phonemes. The ability of feature 
structures to serve as a general-purpose linguistic 
metalanguage led us to use them as the basis of our 
encoding. 

The feature structures in the integrated system are 
coded following the TEI’s DTD for FSs, and they fulfill 
the Feature Structure Definitions (FSD) that have been 

thoroughly described for all the inputs/outputs in the tool 
pipeline. 

Here are two examples. The first one (Figure 2) 
corresponds to the non-standard noun entry ��	��	� 
(Basque for ������) exported from the lexical database 
into the general lexicon. 

<tei.2>  
... 
  <p> 
    <IV�W\SH �6HJPHQWDWLRQ�> <!-- first segmentation: softwaregile + ek --> 
      <f name=")RUP"><str>softwaregileek</str></f> 
      <f name="Lemma-Morphemes" org="list"> 
        <fs type="/HPPD"> 
          <f name="TWOL"><str>softwaregile</str></f> 
          <f name="Unit"> 
            <fs type="Key"> 
              <f name="Entry"><str>softwaregile</str></f> 
              <f name="Homograph-Id"><nbr value="0"></f> 
            </fs> 
          </f> 
          <f name="Features"> 
            <fs type="Feature-List"> 
              <f name="POS"><sym value="NOUN"></f> 
              ... 
              <f name="ROOT"> 
                <fs type="Key"> 
                  <f name="Entry"><str>software</str></f> 
                  <f name="Homograph-Id"><nbr value="0"></f> 
                </fs> 
              </f> 
              <f name="SUFL" org="list"> 
                <fs type="Key"> 
                  <f name="Entry"><str>gile</str></f> 
                  <f name="Homograph-Id"><nbr value="1"></f> 
                </fs> 
        ... 
        <fs type="0RUSKHPH"> 
          <f name="TWOL"><str>ek</str></f> 
          <f name="Unit"> 
            <fs type="Key"> 
              <f name="Entry"><str>ek</str></f> 
              <f name="Homograph-Id"><nbr value="1"></f> 
            </fs> 
          </f> 
          <f name="Features"> 
            <fs type="Feature-List"> 
              <f name="POS"><sym value="DEC"></f> 
              <f name="CASE"><sym value="ERG"></f> 
    ... 
    </fs>  <!------------------ end of first segmentation   ------------------> 
  </p> 
  <p> 
    <IV�W\SH �6HJPHQWDWLRQ�> <!-- second segmentation: software + gile + ek --> 
    ... 
    </fs>  <!---------------- end of second segmentation ---------------------> 
  </p> 
... 
</tei.2> 

Figure 3. Multiple segmentations for 
�����	�������. 

The second example (Figure 3) represents a partial 
view of the output of the segmentizer for the derivative 
word form 
�����	�������� (Basque term for 
�����	��
����	
 in the ergative case). The word form 

�����	������� can be split up in two different ways: 

a) 
�����	����� + �� 
b) 
�����	� + ���� + �� 

The first one reflects the case in which 
�����	����� is 
analyzed as a lexicalized term (the information about the 
constituents of the word then comes from EDBL). As can 
be seen in the figure, in this case the two constituents of 
the word are represented by two <fs> elements: <fs 

type="lemma"> and <fs type="morpheme">3. In the 
second case (not in the figure), the number of constituents 
is three: two parts of the lemma (the root and the lexical 
suffix) and one declension morpheme. 

A linguistic analysis may consist of many different 
types of <fs> elements, each of which may group 
together different types of <f> elements. In order to 
distinguish among the different types of <fs> elements, a 
type attribute that specifies the FS type is provided (for 

                                                      
3 An <fs> element represents a feature structure. It is composed 
by a set of features and their values, represented by <f> 
elements. The element <Lemma> is used to distinguish the 
lemma-constituent morphemes from the inflection morphemes, 
which are described by means of <Morpheme> elements. 



instance, see the "lemma" and "morpheme" FS types in 
Figure 3). 

As a last example (Figure 4), we show a partial view 
of the output of the lemmatizer for the same word form 
(
�����	�������), in which the resultant FS shows a much 
simpler structure, and where one of the interpretations has 
been removed by the morphological disambiguation 
process (part of ��
���). 

<!-- output of EusLem (.lem.sgm): softwaregileek --> 
<tei.2> 
... 
  <p> 
    <fs id="IZE-ARR-1905" type="Lemmatization"> 
      <f name=")RUP"><str>softwaregileek</str></f> 
      <f name="/HPPD"><str>softwaregile</str></f> 
      <f name="0RUSKRORJLFDO�)HDWXUHV"> 
        <fs type="TopLevel-Feature-List"> 
          <f name="POS"><sym value="NOUN"></f> 
          <f name="SUBCAT"><sym value="COMMON"></f> 
          <f name="ANIM"><plus></f> 
          <f name="ROOT"><str>software</str></f> 
          <f name="SUFL" org="list"> 
            <str>gile</str> 
          </f> 
          <f name="CASE"><sym value="ERG"></f> 
          <f name="NUM"><sym value="P"></f> 
          <f name="DET"><sym value=“DET”></f> 
          <f name="SYNTFL" org="list"> 
            <sym value="@SUBJ"> 
    ... 
    </fs> 
  </p> 
... 
</tei.2> 

Figure 4. Disambiguated output of the lemmatizer. 

+�� ����,-����
���
������'
�.

������������
The information flow in Figure 1 is given in more 

detail in Figure 5. Shown there is the integration of the 
lexical database, the tokenizer, ��	
���
�  including the 
modules that perform the morphological segmentation, 
morphosyntactic treatment, treatment of MWLUs and 
morphosyntactic treatment of MWLUs , and ��
���, 
emphasizing that the communication among the different 
processes is made by means of SGML documents (�
�� 
files). As in Figure 1, here also thick line-border 
rectangles are used to represent processes. The rest of this 
section is devoted to the description of these processes in 
sequence. 

Having an SGML-tagged input text file (�
��), the 
tokenizer takes this file and creates, as output, a ���
�� 
file, which contains the list of the tokens recognized in the 
input text (see also Figure 6). The tokenized text (���
��) 
is of great importance in the rest of the analysis process, in 
the sense that it intervenes as input for different processes. 

After the tokenization process, the segmentizer takes 
as input the tokenized text and the general lexicon issued 
from the lexical database, and will produce two 
documents: a �
���
�� file, which contains the different 
segmentation analyses (FSs describing the different 
morphemic segments found in each word token), and a 
�
������
�� file containing the links between the tokens in 
the ���
�� file and their corresponding analyses (one or 
more) in the �
���
�� file (analogous to the ��������
�� 
file in Figure 6). 

After that, the morphosyntactic treatment module 
included in� ��	
���
 takes as input the output of the 
segmentation process to produce its result: the collection 
of morphosyntactic analyses (FSs) corresponding to the 
input text (���	��
��). The morphosyntactic treatment 
module processes the �
������
�� file issued in the 
previous phase producing a ���	�����
�� file that contains 
now the links between the tokens in the ���
�� file and 
their corresponding analyses (one or more) in the 
���	��
�� file. This file will be later enriched by the 
MWLUs’ treatment module. This module, included also in 
��	
���
� performs the processing of multiword lexical 
units, and produces a �������
�� document which 
describes, by means of a collection of <link> elements 
(see Figure 6), the structure of the MWLUs identified in 
the text. This module has obviously access to: (a) the 
���	��
�� file, in order to be able to remove some single-
word analysis FSs in the cases that MWLUs are 
unambiguously recognized, and (b) the ���	�����
�� file, 
into which it will add the links between the �������
���
file and the ���	��
��� file4. The treatment of MWLUs is 
finally completed by the MWLUs’ morphosyntactic 
treatment module. 

Tokenization

Morphological
Segmentation

Morphosyntactic
Treatment

Treatment of
MWLUs

Morphosyntactic
Treatment of

MWLUs

(XV/HP

(lemmatizer)

Text
(�VJP)

Segmentations
(�VHJ�VJP)

Morphosyntactic
Analyses

(�PRUI�VJP)

Lemmatizations
(� OHP�VJP)

MWLUs’
Structure

(�PZOQN�VJP)

Tokenized
Text (�Z�VJP)

General
Lexicon

(�HGEO�VJP)

MWLUs’
Lexicon

(�PZHGEO�VJP)

Links: .w.sgm - .seg.sgm
(�VHJOQN�VJP )

Links: .w.sgm - .morf.sgm
.mwlnk.sgm - .morf.sgm

(�PRUIOQN�VJP)

Links: .w.sgm - .lem.sgm
.mwlnk.sgm - .lem.sgm

(� OHPOQN�VJP)  

Figure 5. Detailed information flow between the analysis 
tools. 

The file containing the morphosyntactic analysis FSs, 
the �������
�� file, the ���	�����
���file, and the output 
of the tokenizer constitute the input of the lemmatizer. 

                                                      
4 The links between the �������
��� file and the ���	��
��� file 
represent the MWLU analyses found in the text. In this case, 
they do not link tokens with their analyses, but a MWLU’s  
structure denoting links (in the �������
��� file) with its 
corresponding analyses in the ���	��
���file. 



<linkGrp type=’MWLU’ targOrder=Y>
  <link id=mwlnk1 targets=’w51 w52’>
  ...

<linkGrp type=’w-lem’ targOrder=Y>
  <link targets=’w54 IZE-IZB-3’>
  <link targets=’w55 LOT-LOK-3’>
  <link targets=’w56 IZE-ARR-21’>
  <link targets=’w56 ADI-SIN-20’>
  <link targets=’w57 ADT-9’>
  ...
<linkGrp type=’mwlnk-lem’ targOrder=Y>
  <link targets=’mwlnk1 LOT-LOK-7’> 0 : / 8 V 
 � V W U X F W X U H  ( � P Z O Q N � V J P )

<text id=T1>
  ...
  <w id=w51 tag=BEG_UC>Hala</w>
  <w id=w52>ere</w>
  <w id=w53 tag=PUNCT>,</w>
  <w id=w54 tag=BEG_UC>Marijose</w>
  <w id=w55>ere</w>
  <w id=w56>kalera</w>
  <w id=w57>dijoa</w>
  <w id=w58 tag=PUNCT>.</w>
  ...
</text>

7 R N H Q L ] H G � W H [ W  ( � Z � V J P )

/ L Q N � I L O H  ( � O H P O Q N � V J P )

<text id=’T1’> ... <p>Hala ere, Marijose
ere kalera dijoa.</p> ... </text>

< t e x t  i d = L 1 >
  . . .
  < f s  i d = L O T - L O K - 3  t y p e = ’ L e m m a t i z a t i o n ’ >
    < f  n a m e = F o r m > < s t r > e r e < / s t r > < / f >
    < f  n a m e = L e m m a > < s t r > e r e < / s t r > < / f >
    < f  n a m e = M o r p h o l o g i c a l - F e a t u r e s >
      < f s  t y p e = ’ T o p - F e a t u r e s - L i s t ’ >
        < f  n a m e = P O S > < s y m  v a l u e = L O T > < / f >
        < f  n a m e = S U B C A T > < s y m  v a l u e = L O K > < / f >
        < f  n a m e = S F L  o r g = l i s t >
          < s y m  v a l u e = @ L O K >
        < / f >
      < / f s >
    < / f >
  < / f s >
  < f s  i d = L O T - L O K - 7  t y p e = ’ L e m m a t i z a t i o n ’ >
    < f  n a m e = F o r m > < s t r > h a l a  e r e < / s t r > < / f >
    < f  n a m e = L e m m a > < s t r > h a l a  e r e < / s t r > < / f >
    < f  n a m e = M o r p h o l o g i c a l - F e a t u r e s >
      < f s  t y p e = ’ T o p - F e a t u r e s - L i s t ’ >
        < f  n a m e = P O S > < s y m  v a l u e = L O T > < / f >
        < f  n a m e = S U B C A T > < s y m  v a l u e = L O K > < / f >
      < / f s >
    < / f >
  < / f s >
  < f s  i d = I Z E - I Z B - 3  t y p e = ’ L e m m a t i z a t i o n ’ >
    < f  n a m e = F o r m > < s t r > M a r i j o s e < / s t r > < / f >
    < f  n a m e = L e m m a > < s t r > M a r i j o s e < / s t r > < / f >
    < f  n a m e = M o r p h o l o g i c a l - F e a t u r e s >
      < f s  t y p e = ’ T o p - F e a t u r e s - L i s t ’ >
        < f  n a m e = P O S > < s y m  v a l u e = I Z E > < / f >
        < f  n a m e = S U B C A T > < s y m  v a l u e = I Z B > < / f >
      < / f s >
    < / f >
  < / f s >
  . . .

6 * 0 / � H Q F R G H G � L Q S X W � W H [ W  ( � V J P )

/ H P P D W L ] D W L R Q V � ( � O H P � V J P )

 

Figure 6. Output of the lemmatizer: a sample of the four-document set. 

The lemmatizer produces two more files: �����
�� that 
contains the lemmatization FSs corresponding to the input 
text, and ��������
�� that stores the links between the 
tokens and their corresponding lemmatization analyses, 
plus, in the case of MWLUs, the links between the 
MWLU’s formation denoting links (�������
��)�and their 
corresponding lemmatization analyses5. It is also capable 
of updating the �������
�� file if, due to the 
disambiguation performed, it has to remove some of the 
links previously included in it. 

                                                      
5 In  fact, the lemmatizer also gives some information about the 
syntactic functions corresponding to the word and multiword 
tokens recognized in the text. This information comes in part 
from the lexicon, and it is enriched in the lemmatization process 
by applying Constraint Grammar mapping rules. It is represented 
by means of two documents, a library of the different syntactic 
functions (�
��
��) and the corresponding link file (�
�����
��) 
that attach, in this case, the token, the lemmatization identifier, 
and the syntactic function identifier. The purpose of this 
information is obviously to be used in the syntactic analysis of 
the sentence that is outside the scope of this paper;  because of 
that, these documents are not represented in the figure. 

+�(��  
���	���'������
�	������������
���������
As has been shown in the preceding section, the output 

of each one of the analysis tools may be seen as composed 
of several documents that, in the most complex case, 
constitute a four-document set. 

As an example, we show in Figure 6 the lemmatizer’s 
output. It can be seen as composed of four SGML-coded 
documents: 

• Text elements found in the input: 
1) The list of lexical instances or single-word 

tokens issued from the tokenizer (���
��). 
This document is, in fact, part of the input of 
the lemmatizer, but it must be also seen as a 
part of its resulting set of documents in order 
to be able to, for example, display it in an 
integrated fashion. 

2) The document that describes the MWLU’s 
structure (�������
��). It can be considered 
as an enrichment of the information contained 
in the list of tokens, in the sense that it 
constitutes the collection of “multiword 
tokens” identified in the input. 



• Analysis collection: 
3) The lemmatization analyses produced 

(�����
��). It constitutes a library of the 
different analyses (FSs) found in the given 
input text. 

• Links from the text elements to their 
corresponding analysis or analyses: 
4) Finally, the document ��������
��, which 

contains the links between the single-word 
tokens in the 1st file and their corresponding 
analyses included in the 3rd, and the MWLU’s 
in the 2nd and their analyses in the 3rd. 

So, we speak about a four-document set system that 
gives, as pointed out in (Ide & Véronis, 1995), more 
independence and flexibility to the different processes, 
and greater facilities for their integration (see Figure 6).  

It is interesting to note that, in the case of ��
���� as 
well as in that of ��	
���
 , the collection of links 
between the text elements and their corresponding 
analysis FSs (�����
�� file) is divided into two different 

parts, grouped into two different <linkgrp> elements: 
(1) the links between single-word text elements and their 
analyses (<linkgrp type=’w-lem’>), and (2) the links 
between the multiword text elements and their analyses  
(<linkgrp type=’mwlnk-lem’>). 

As has been mentioned above, the 3rd document can be 
considered as a library that stores the different analyses 
(FSs) found in the text. It is clear that, before adding a 
new analysis FS to this document, the lemmatizer’s back-
end will always check whether it has already been stored 
because of a previous occurrence of the same text element 
in the input. In this case, the lemmatizer will not add it 
again (it will just add a new link to the 4th file). 

We are already building an environment for manual 
disambiguation of the output of the lemmatization 
process, which will facilitate the disambiguation task for 
the linguists, providing them with a graphical interface 
with hypertextual facilities, based on the four-document 
set and on the input text. 

��������	
���	�	��
����
FS:: 
 Id: FSId 
 Type: FSType 
 Features: FList 

��������	
�
FEATURE_STRUCTURE ([Id: FSId]; Type: FSType; [Feature_List: FList]) FStruct: FS 
 ��� 
 ��
� Id (FStruct) = Id & 
      Type (FStruct) = Type & 
      (Features (FStruct) = [] or Features (FStruct) = Feature_List) 
ADD_F (FStruct1: FS; F1: F) FStruct2: FS 
 ��� 
 ��
� Features (FStruct2) = Features (FStruct1) • F1 
ID (FStruct: FS) Id: FSId 
 ��� 
 ��
� Id = Id (FStruct) 
TYPE (FStruct: FS) Type: FSType 
 ��� 
 ��
� Type = Type (FStruct) 
FEATURES (FStruct: FS) Feature_List: FList 
 ��� 
 ��
�   Feature_List = Features (FStruct)  
ID_MODIFY (FStruct1: FS; Id: FSId) FStruct2: FS 
 ��� 
 ��
� Id = Id (FStruct2) 
FEATURE_VALUE (FStruct: FS; N: FName) V: [FValue] 
 ��� 
 ��
� (exists I in inds Features (FStruct) | 
        Name (Features (FStruct) (I)) = N & 
        (V = Value (Features (FStruct) (I))) or V = nil) 
COPY (FStruct1: FS) FStruct2: FS 
 ��� 
 ��
�  FStruct2 =  FStruct1l 
EQUAL (FStruct1: FS; FStruct2: FS) B: Boolean  
 ��� 
 ��
� B = (FStruct2 =  FStruct1) 

Figure 7. Formal specification of the FS Abstract Data Type. 

                                                      
6 F, FName, and FValue are ADTs specified in the same way. 

/�� ���
�������0��
��'������� �����0�
�����
1
����
���������
��

In this section we present the library designed in order 
to facilitate the work with the FSs describing the linguistic 

information in our integrated system. The different 
elements used in it have been characterized as Abstract 
Data Types (ADT). As is well known, the theory 
underlying ADTs gives the user a way to describe which 
kind of values belong to a particular type, and to 



determine precisely the set of operations that can be 
performed on them.  

As a result of the analysis of the characteristics and 
structure of the different data used as input and output of 
the analysis tools, we have identified the different ADTs 
intervening, and we have consequently implemented 
several library modules to encapsulate them. The set of 
packages implemented provides internal representation 
and operations for the following types among others: FS, 
FSD, Link, MWLink, Feature, Value, FSId, FSList, 
FList, LList, and so on. 

 These packages offer the necessary operations the 
different tools need to perform their task when 
recognizing the input and producing their output. 

These functions allow: 
a) getting the necessary information from an SGML 

document containing tokens, links, multiword 
structure links or FSs; 

b) producing with ease the corresponding output 
according to a well-defined SGML description. 

In Figure 7 we show a partial view on the 
specifications of the FS (feature structure) ADT. Values of 
this type are represented by triples (Id, Type and 
Features). Each component of the triple is an attribute 
whose value belongs to another ADT. So, the Id 
component belongs to the FSId ADT, the Type 
component to the FSType ADT, and, finally, the 
Features component to the FList (features list) ADT. 
Each one of these ADTs has been specified elsewhere in 
the same way. 

As can be seen in Figure 7, the operations defined in 
the FS ADT are the following: 

• FEATURE_STRUCTURE (type’s constructor): builds 
up an FS object given the type and, optionally, an 
identification and a feature list.  

• ADD_F: adds a new feature to the feature structure. 
• ID, TYPE and FEATURES: operations that give 

access to the feature structure attributes. 
• EQUAL, COPY and so on: perform different actions 

on the feature structure. The first one examines 
two FSs saying whether they represent the same 
object; COPY will reproduce an FS object in another 
FS. 

The ADTs’ library has been implemented in C++, 
following an object-oriented methodology. For the 
implementation of the different operations we make use of 
the LT NSL system (Mckelvie ��� ����� 1997), a tool 
architecture for SGML-based processing of text corpora. 
The current release of the library works on Unix (Solaris 
2.5). 

2�� 3���	����������
����
�.��4�
We have presented our methodology for the 

integration of linguistic tools, developed following the 
TEI P3 guidelines. 

We have mentioned above the environment for manual 
disambiguation of the lemmatizer’s output that is under 
development. We are also considering the feasibility of 
building general front- and back-end modules for the 
analysis tools, which will take as input the specific FSDs 
for each input/output. A schematic view of the integration 
of these general modules with a particular tool can be seen 
in Figure 8. 

GENERAL FRONT-END
(input recognizer)

GENERAL BACK-END
(output producer)

/,1*8,67,&�$1$/<6,6�722/
(FSs’ internal representation)

analysis data from
the previous tool

TEI’s DTDs
for FSs

input text

results of the analysis

FSD corresp. 
to output

FSD corresp. 
to input

 

Figure 8. Schematic view of a linguistic analysis tool with 
its general front- end back-ends. 

The use of SGML as an I/O stream format between 
programs has, in our opinion, the following advantages: 

a) It is a well-defined standard for the representation 
of structured texts that provides a formal 
framework for the internal processing. 

b) It provides widely recognized facilities for the 
exchange of data: given the DTD, it is easy to 
process any conformant document. 

c) It forces us to formally define the input and the 
output of the tools used for the linguistic analysis 
of the text. 

d) It facilitates the future integration of new tools 
into the analysis chain.  

e) Pieces of software are available for checking the 
syntactic correctness of the documents, 
information retrieval, modifications, filtering, and 
so on. It makes it easy to generate the information 
in different formats (for processing, printing, 
screen-displaying, publishing in the web, or 
translating into other languages).  

f) Finally, it allows us to store different analysis sets 
(segmentations, complete morphosyntactic 
analyses, lemmatization results, and so on) linked 
to a tokenized piece of text, in which any 
particular analysis FS will not have to be repeated. 

5�� ��4��.	
��
�
����
We would like to thank Prof. Jon Patrick for his 

valuable comments on an earlier draft of this paper. 
This work is being carried out in the project G19/99, 

supported by the University of the Basque Country. 

6�� 7


�
��
��
Aduriz I., Aldezabal J.M., Artola X., Ezeiza N.,Urizar R., 

1996. Multiword Lexical Units in EUSLEM: a 
lemmatiser-tagger for Basque. In  	���� ���
!��
���������� �������	�
�� "!��
���#$%&, 1-8. 
Linguistics Institute, Hungarian Academy of Sciences. 
Budapest (Hungary). 

Aduriz I., Agirre E., Aldezabal I., Alegria I., Ansa O., 
Arregi X., Arriola J.M., Artola X., Díaz de Ilarraza A., 
Ezeiza N., Gojenola K., Maritxalar A., Maritxalar M., 
Oronoz M., Sarasola K., Soroa A., Urizar R., Urkia M., 
1998. A Framework for the Automatic Processing of 
Basque. In  	���� ��� ���� '�	
�� (���� !����� ��� ���������
)�
��	��
������*��������. Granada (Spain). 



Aduriz I., Aldezabal I., Ansa O., Artola X., Díaz de 
Ilarraza A., Insausti J. M., 1998. EDBL: a Multi-
Purposed Lexical Support for the Treatment of Basque. 
In  	�����������'�	
��(����!�����������������)�
��	��
�
�����*��������, vol II, 821-826. Granada (Spain). 

Aduriz I., Agirre E., Aldezabal I., Arregi X., Arriola J.M., 
Artola X., Gojenola K., Maritxalar A., Sarasola K., 
Urkia M., 2000. A Word-Level Morphosyntactic 
Grammar For Basque. In  	�����������+������(����!�����
��� ��������� )�
��	��
� ���� �*��������. Athens 
(Greece). 

Alegria I., Artola X., Sarasola K., Urkia M., 1996. 
Automatic morphological analysis of Basque. ����	�	��
,�������
����!��
�����, 11, no. 4, 193-203. 

Ezeiza N., Aduriz I., Alegria I., Arriola J.M., Urizar R., 
1998. Combining Stochastic and Rule-Based Methods 
for Disambiguation in Agglutinative Languages. In 
 	����!-�(./01!�#$2, 10-14. Montreal (Canada). 

Ide N., Véronis J. (eds.), 1995. �������������� (�������*���
3����	���������!��������Kluwer Academic Pub. 

Jacobson R., 1949. The Identification of Phonemic 
Entities. �	�*���� ��� !�	���� ������
��4��� ���
!�
�������, 5, 205-213. 

Karlsson F., Voutilainen A., Heikkilä J., Anttila A., 1995. 
!��
�	�����/	����	5�1���������0����
�������+�
����
��	� �	
������	�
�	����������. Mouton de Gruyter. 

Mckelvie, D., Brew, C., Thompson, H., 1997. Using 
SGML as a basis for Data-Intensive NLP. In  	����
1.� #$6. Washington (USA). 

Sperberg-McQueen C.M., Burnard L., 1994. /��������
�
��	������	�����������������������(���	������. TEI P3 
Text Encoding Initiative. 


