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Abstract
Lexical resources play a crucial role in language technology but lexical acquisition can often be a time-consuming, laborious and costly
exercise. In this paper, we describe a method for the automatic acquisition of technical terminology from domain restricted texts without
the need for sophisticated natural language processing tools, such as taggers or parsers, or text corpora annotated with labelled cases.
The method is based on the idea of using prior or seed knowledge in order to discover co-occurrence patterns for the terms in the texts.
A bootstrapping algorithm has been developed that identifies patterns and new terms in an iterative manner. Experiments with scientific
journal abstracts in the biology domain indicate an accuracy rate for the extracted terms ranging from 58% to 71%. The new terms have
been found useful for improving the coverage of a system used for terminology identification tasks in the biology domain.

1. Introduction
The recognition and classification of names and techni-

cal terminology in machine readable texts is important for
language engineering applications such as Text Classifica-
tion (TC), Information Retrieval (IR), Information Extrac-
tion (IE) and Machine Translation (MT). While approaches
for the automatic extraction of names from running text can
vary from rule-based (Gaizauskas et al., 1995; Justeson and
Katz, 1995) to statistical ones (Bikel et al., 1997; Renals
et al., 1999), in many of the IR and IE systems evaluated
in the TREC (Harman, 1998), MUC (DARPA, 1998) and
DARPA (DARPA, 1999) conferences, the use of specialised
lexicons or gazetteers is an essential part of the name iden-
tification process. Such lexicons or lists of names are used
as repositories of the entities of the domain, such as the
names of persons, organisations and locations. Looking up
a name in the lexicon is not computationally expensive and
is often used as a first step towards the full recognition and
classification of such named entities in the text.

Typically, lexicons of named entities are either hand-
crafted or acquired automatically from annotated corpora
when sufficient text quantities have been labelled by do-
main experts. In either case, the acquisition of lexical
knowledge represents a time-consuming and laborious pro-
cess and is a hindrance to efforts of adapting existing Nat-
ural Language Processing (NLP) systems to new domains.
Automating the acquisition of names from untagged texts
could therefore be of great help to system developers.

There has been recently an increased interest in tech-
niques of bootstrapping for automatic term acquisition from
untagged text in relation to Named Entity (NE) recognition
tasks (Collins and Singer, 1999; Cucerzan and Yarowsky,
1999; Jones et al., 1999). A bootstrapping approach to
term acquisition is based on the distributional hypothesis
that entities of the same semantic class usually occur in
similar contextual environments. In the management suc-
cession domain (DARPA, 1995), for example, the names of
persons and locations frequently occur in language patterns
like <X> succeeded <Y> or <X> resigned from <Z>

where <X> and <Y> represent the names of persons and <Z>
the name of an organisation. When there is prior informa-
tion about the names of interest, we can use this information
as seed knowledge in order to extract co-occurrence pat-
terns (such as resigned from ). These patterns are then
used to identify new names which are used as new seeds
for extracting new patterns and so on. Using a bootstrap-
ping method for term identification is an attractive option
because there is no need to annotate the texts with labels of
name classes and, usually, examples of terms that could be
used as seeds can be found easily.

The approach by Jones et al. (1999) uses a boot-
strapping technique for learning the names of locations in
WWW pages. They first initialise a learner module with a
few seed words and then run AutoSlog (an extraction sys-
tem that uses heuristics in the form of domain-independent
linguistic rules) to generate extraction patterns and acquire
the names of locations from the unlabelled data iteratively.
They report 76% accuracy for a dictionary of 250 extracted
location names.

Cucerzan and Yarowsky (1999) use an Expectation-
Maximisation (Dempster et al., 1977) bootstrap procedure
to identify the names of places and people from untagged
texts in several languages. Their algorithm learns the left
and right contexts that are indicative of the semantic classes
of the seed words. It then re-estimates the probabilities of
contextual and morphological clues for each class and the
decision to classify a name is taken by combining the dif-
ferent sources of evidence. The precision of the extracted
names ranges from 60% to 84% depending on the language.

Collins and Singer (1999) classify the names of per-
son, organisations and locations using an unsupervised ver-
sion of the decision list method for word sense disambigua-
tion originally proposed by (Yarowsky, 1995). A syntac-
tic parser is used to extract the contextual patterns and
the learning algorithm extracts capitalisation and contextual
rules for a semantic class. These rules are used iteratively
to annotate the training set with labels indicating the differ-
ent semantic classes. They report results ranging from 76%



to 91% depending on the algorithm configuration and the
evaluation metric used.

In this paper we describe a generic method for the au-
tomatic acquisition of scientific terminology from domain
specific untagged texts. This work is related to research
for the Protein Active Site Template Acquisition (PASTA)
project 1 that aims at extracting protein structure informa-
tion from online journal articles and abstracts. The NE
identification component of the PASTA system makes ex-
tensive use of lexicons of biological information such as
protein names, species names, etc. But when new protein
names are introduced in the literature, the lexicons must
be updated, since they can only provide information about
proteins reported at the time the lexicons were compiled.

A second problem is that of spelling differences be-
tween the name of a protein in the lexicon and the name
of the same protein in the texts. This may be due to vari-
ations in expression (this is especially the case of multi-
word protein names), abbreviations or inconsistencies in
spelling. For example, the protein entry PI-specific

phospholipase C isozyme D1 in the lexicon may
be found as phosphoinositide-specific phospho-

lipase C-delta 1 or phospholipase C-delta(1).
This problem may have an impact on systems that use string
pattern matching strategies for identifying the names in the
texts and, although there are ways of dealing with this prob-
lem (see section 5 where the NE component of the PASTA
system is discussed), it is always desirable to have entries in
the lexicon that are accurate representations of the named
entities that occur in the texts.

Adopting a bootstrapping approach for extracting novel
terms from untagged texts is based on the idea, that when
some lists of terms of the domain are available, however in-
complete they may be, they can be used as prior knowledge
to extract new terms.

During a first pass of the input texts, the algorithm lo-
cates the instances of the seed terms. The context around
each term is explored and statistics about the co-occurrence
of contextual patterns in the form of n-grams (word se-
quences) and the term class are computed. The patterns are
scored to verify which ones satisfy certain statistical sig-
nificance requirements i.e. occur significantly more in the
context of a term class as compared to their frequencies of
occurrence in the corpus. The patterns retained after eval-
uation are fed back into the system to identify new terms
which are used to extract new patterns and so on. This is
an iterative process which terminates when no new terms or
new contextual patterns are found.

The approach is similar in principle to the bootstrapping
technique by Jones et al. (1999) although the two algo-
rithms differ in some important details such as the genera-
tion of contextual patterns, the scoring metric for evaluating
the patterns, and the number of patterns applied at each it-
eration. This approach should also be contrasted to Vilain
and Day (1996) and Bikel et al. (1997) which learn similar
contextual patterns, but while they achieve high accuracy
results, they rely on annotated data. In our method only un-
tagged text, a list of seed terms and a lexicon of common

1http://www.dcs.shef.ac.uk/research/groups/nlp/pasta/

English words are needed thus avoiding the cost of manu-
ally annotating a large amount of data.

We must note that the objective of acquiring terms from
untagged texts is twofold:

� To investigate the feasibility of extracting terms from
untagged texts in order to support the rapid adaptation
of systems that use terminological lexicons to new do-
mains.

� To evaluate the impact of the new terms on IE extrac-
tion tasks.

The next section describes the problem domain with re-
gard to the characteristics of the biological texts and the
nature of the terms to be extracted. In section 3, the tech-
nical aspects of the algorithm are described and in section
4 the experiments with the algorithm and their results are
reported. In section 5, we describe the process of terminol-
ogy identification within the PASTA IE system and how the
augmentation of the existing lexicons with the new terms
influences the results of term recognition and classification.

2. The Problem Domain
Typically, journal articles in the domain of protein

structures describe details of protein composition in terms
of the amino acids that take part in 3-dimensional structural
arrangements. New protein structures are being reported in
the literature at very high rates and the number of protein
co-ordinate sets (currently about 12000) in the Protein
Data Bank (PDB) (Bernstein et al., 1977) is expected to
increase ten-fold in the next five years. As an example of
a text from this domain, a fragment of a journal paper is
shown below:

Results: We have determined the crystal structure
of a triacylglycerol lipase from Pseudomonas
cepacia (Pet) in the absence of a bound inhibitor
using X-ray crystallography. The structure shows
the lipase to contain an alpha/beta-hydrolase fold
and a catalytic triad comprising of residues Ser87,
His286 and Asp264. The enzyme shares several
structural features with homologous lipases from
Pseudomonas glumae (PgL) and Chromobacterium
viscosum (CvL), including a calcium-binding site.
The present structure of Pet reveals a highly open
conformation with a solvent-accessible active site.
This is in contrast to the structures of PgL and Pet
in which the active site is buried under a closed or
partially opened ’lid’, respectively.

Identifying protein names in biological papers is a chal-
lenging and demanding task. To our knowledge, there is
no standard grammar that can fully describe the structure
of protein names. Protein names can either be single words
(e.g. pectin, endonuclease) or compounds that may
consist of two or more words (e.g. major birch pollen

allergen Bet v 1). More than 70% of the protein en-
tries in our lexicons are multi-word names.

In contrast to names of persons, organisations and lo-
cations in newswire texts, capitalisation of the first letter is



not a standard feature of protein names. They may con-
tain lower and upper case characters in various positions
(e.g. tRNA synthetase), numerals and non-alphabetical
characters (e.g. 1,3,8-trihydroxynaphtalene re-

ductase) and they can have no special prefix or suffix
(e.g. pbp-2x, c-Raf1, f1f0-atp)2. In some cases,
the names contain conjunctions (e.g. Hirutonin-2 and

-6) or prepositional phrases that may indicate a subunit
(e.g. beta1-subunit of the signal-transducing

G protein) or a function (e.g. bcl-2 inhibitors of

programmed cell death).
One way of developing an algorithm for the automatic

extraction of terms would be by training statistical models
(Bikel et al., 1997) or by learning phrase sequence rules
(Vilain and Day, 1996) using large amounts of annotated
data. However, because no corpus annotated with biolog-
ical information has been available, such approaches were
not feasible in our case. Furthermore, the application of
syntactic taggers and parsers trained on general language
texts would be questionable due to the occurrence domain
specific biological terms that usually do not occur in gen-
eral language. It is for these reasons that we believe a boot-
strapping technique is particularly relevant for discovering
new terms in this domain.

3. Description of the Bootstrapping
Algorithm

A bootstrapping approach to term acquisition starts
with a selection of examples of terms that may occur
in the corpus. These examples are then fed into the
system to identify contextual clues or patterns that fre-
quently occur in the environments of the terms. For ex-
ample, in journal articles on protein structure, authors fre-
quently use expressions such as the crystal struc-

ture of <P> or three-dimensional structure of

<P> from <S>where <P> is a protein name and <S> is the
name of a species. The bootstrapping procedure would first
attempt to match the seed terms in the text (i.e. triacyl-
glycerol lipase) and extract its left and right contexts
(i.e. the crystal structure of aand from ). It will
subsequently use these patterns to extract new terms which
will be used as new seeds and the process will start again.

One of the considerations when applying a bootstrap-
ping algorithm is whether the generated patterns will be re-
liable enough for identifying new terms. It would be rea-
sonable to assume that from all patterns generated at each
iteration of the algorithm, only a fraction would identify
protein names with a high degree of reliability. In related
work by Jones et al. (1999), a heuristic function scores the
patterns and only the highest ranked pattern is used as seed
at each iteration. In the algorithm presented in this paper, a
statistical test is used to prune the list of extracted patterns
and identify those which are significantly associated with
protein names.

From the statistical point of view, it would be interest-
ing to estimate the language constraint of the biology texts.
Such an estimation can give an indication of the degree of

2For a more complete analysis of the nomenclature of protein
names see Fukuda et al. (1998)

the difficulty of identifying frequent language expressions
in such texts. In an initial investigation, we estimated the
constraint in our texts using perplexity, an information the-
oretic measure commonly used in language modelling (Je-
linek, 1990). The perplexity for the corpus of biological
texts was found to be much lower (270) than for texts of
similar size drawn randomly from the British National Cor-
pus (740). This is an indication that although the vocabu-
lary is very rich for this domain, the language constraint is
quite high and we would expect certain language patterns
to occur frequently enough in the corpus so that they can be
candidates for pattern generation. The outline of the boot-
strapping algorithm is shown in Figure 1.

1. Initialisation:

� Extract initial set of contextual patterns using the seeds

� Identify significant patterns

� Terminate if no significant patterns exist

2. Name Extraction:

� Apply significant patterns and extract new names

� Terminate if no new names are found

3. Pattern Generation:

� Match the new names and extract new patterns

� Identify significant patterns

� Terminate if no significant patterns exist

4. Go to step 2

Figure 1: The term bootstrapping algorithm.

In the initialisation phase, the text is processed in a
left-to-right order and a longest match procedure is used
to match potential word sequences against the seed terms.
For each matched term, the word sequences or n-grams of
up to six words that occur immediately to the left and to the
right of the term are extracted. Only the statistically signif-
icant n-grams as scored by the Pearson �2 test are retained
as contextual patterns. In our experiments, the �2 signif-
icance level was set at 0.5%, and, to avoid problems with
low counts, only n-grams with a frequency of 5 or more
were scored.

In the name extraction phase, the patterns are applied
to the text in order to identify new terms. Any pattern that
indicates a left context is matched first and the algorithm
will gather any word sequence to the right of the pattern as a
potential new term (unless the same term has been matched
before) up to the point when a right-side contextual pattern
is found.

In initial versions with the algorithm, both the left-side
and right-side contexts were statistically evaluated. It was
found however, that the number of significant right-side
contexts identified in this way was very low and in most
cases there would be no correlation at all between left-side
and right-side contextual patterns in our texts. For this
reason, the algorithm was modified so that the right-side
patterns are matched against unigrams taken from a list of
common English words.



The newly identified terms are used in phase 3 to extract
more contextual patterns which are in turn used to extract
new terms. This iterative process terminates when no more
contextual patterns or no more terms are found.

This algorithm is conceptually simple and has a num-
ber of differences from the one of Jones et al. (1999), most
notable of which is the generation of contextual patterns.
Jones et al. (1999) use the AutoSlog system (Riloff and
Lehnert, 1993) for pattern generation which requires some
sort of grammatical analysis of the sentence in order to as-
sign noun phrases to syntactic categories such as subject,
direct object or prepositional phrase. In this approach, no
grammatical analysis of the text is necessary and no heuris-
tics are used for generating the contextual n-grams. In addi-
tion, in Jones et al. (1999)’s work the patterns are scored by
a heuristic scoring function that attempts to balance the fre-
quency of a pattern with its reliability in extracting names
of the same class and only the top ranked pattern is used
at each iteration of the bootstrapping process. In our algo-
rithm, the patterns are evaluated statistically and all patterns
judged as significant are retained and applied at each itera-
tion.

4. Experiments and Results
In the experiments, we used a corpus of 1500 scien-

tific abstracts (about 350,000 words), an initial seed lexicon
of 660 protein names and variable length n-grams ranging
from 1 to 6 words. The bootstrapping algorithm identified
98 significant contextual patterns in total from which it ex-
tracted 984 unique new names.

For the evaluation we classified the answers into three
different categories:

Correct: This category includes extractions that were true
protein names in their full forms.

Partially Correct: This category includes extractions of
either

� names which were not extracted in their full
forms (as in the case of lactoferricin instead
of the correct lactoferricin b) , or

� names that contained irrelevant items (usually
common words) as part of the protein name
(as in the case of enzyme methylmalonyl-

coenzyme A (CoA) instead of the correct
methylmalonyl-coenzyme A (CoA)).

Incorrect: This category includes incorrect answers or
those that could not be put in any of the two previous
categories.

The evaluation classified 58% of the answers as correct,
13% partially correct and 29% incorrect. The correct an-
swers thus represent about 86% augmentation to the entries
included in the seed lexicon. The top 20 contextual patterns
identified by the algorithm are shown in table 1.

An analysis of the partially correct and incorrect an-
swers provides some insight into the errors made by the
algorithm. About half of the partially correct answers were
due to the fact that the algorithm missed part of a name be-
cause it judged common English words such as domain,

Significant contextual patterns

of human
structure of the
of the human
encodes a
domain of the
the cholera
of staphylococcal
solution structure of
the bacterial
first structure of a
crystal-structure of
the reaction catalyzed by
crystal structure of
members of the
structure of the human
domains of the
a member of the
3-dimensional structure of
dna-binding domain of the
rat liver
three-dimensional structure of

Table 1: Top 20 contextual patterns ranked by � 2

subunit, type, etc. as right patterns. For example, for
a name such as fibronectin type III , the algorithm
would extract only the constituent fibronectin . Such
extractions were classified as partially correct only if the ex-
tracted name could be used to indicate a protein or a protein
family (otherwise such names were classified as incorrect).

A substantial proportion of the partially correct an-
swers included common words like the, enzyme, pro-

tein etc. usually at the beginning of the extracted
name. Such words would often follow left-side patterns
such as enzyme in the structure of the the en-

zyme 3-oxo-Delta(5)-steroid isomerase.
It could be argued that with simple modifications to the

algorithm such errors could be eliminated and the majority
of the partially correct answers could be extracted as fully
correct. A modification might involve, for instance, a sim-
ple checking procedure so that common English words are
not included at the beginning of a protein name. Another
modification would ensure that words such as domain or
type (that may be part of a protein’s name) are not matched
as right-side contextual patterns by looking them up in a list
of exceptions. However, it should be taken into account that
such heuristics may not work for a different term class or a
different text domain.

With regard to the incorrect extractions, a large percent-
age of the errors made by the algorithm were those when
part of the protein name was extracted as the full name.
This is is similar to the type of errors made for the partially
correct answers, but in this case the extracted terms could
not be protein names at all (e.g. catalytic, copper-

substituted, major beta-sheet, etc.).
A second type of errors were due to references

to proteins (or parts of proteins) that had been men-
tioned before in the text. For example, in the
case of the solution structure of the peptide



backbone was determined the algorithm would extract
peptide backbone as the name. There were a lot of in-
stances in these texts where, once a protein is introduced by
its name, the authors often refer back to it by using terms
such as protein, enzyme, peptide, subunit, se-

quence, complex, etc. We decided to judge these refer-
ents as errors as they are general terms that cannot be used
to describe a specific protein explicitly if added to the lexi-
con.

Finally, names referring to protein complexes were
difficult to extract and were responsible for a number
of errors as, for example, in the case of the crystal

structure of a stoichiometric complex be-

tween an elastose-specific inhibitor elafin

and porcine pancreatic elastase (ppe) where
stoichiometricwould be extracted as the protein name.
Unfortunately, a simple statistical approach cannot capture
complicated contextual relationships in such expressions,
and a more sophisticated linguistic analysis would be
required to identify the syntactic structures (noun phrases
and prepositional phrases) that are used in many names of
protein complexes.

We conducted an experiment to investigate the impact
of the text size on the extraction of new terms. In this ex-
periment, the number of the texts varied from 300 to 1500
while the seed lexicon included 660 terms.

In the bar graph of figure 2, the matched seeds represent
the number of unique seed terms matched in the texts, the
patterns represent the total number of significant patterns
identified and the new terms indicate the total number of
extracted names, either correct or incorrect.

It could be argued that with more texts there is an in-
creased probability for finding a seed term in the texts.
This hypothesis was verified practically and the probabil-
ity of matching a seed term in the text was found to range
from about 9% (300 texts) to 39% (1500 texts). The re-
sults suggest that with more texts, there are generally more
seed terms matched and more patterns identified by the al-
gorithm. As an effect, more new terms are extracted from
the texts.

In a different experiment, we investigated the impact of
the size of the seed lexicon on the discovery of patterns and
the extraction of terms. In this experiment, all 1500 texts
were used and the size of the seed lexicon varied from 100
to 660. On average each seed term was found to match from
0.27 times (100 seeds) to 1.9 times (660 seeds) in the texts.
It can be seen from Figure 3 that with more seeds, there is
an increased number of significant patterns discovered and
consequently an increased number of extracted terms.

5. Evaluation within PASTA

We evaluated the contribution of the terms extracted by
the bootstrapping algorithm in terminology identification
tasks within the PASTA IE system using a test set of 50 sci-
entific journal abstracts. The standard evaluation metrics of
precisionand recall were used for evaluation. Precision is
the percentage of the system’s answers that are correct. Re-
call is the percentage of the correct answers in the texts that
the system managed to retrieve.

Figure 2: The impact of text size on pattern discovery and
term extraction

Figure 3: The impact of the seed lexicon size on pattern
discovery and term extraction

It must be noted that the PASTA system has been
adapted from a generic IE system LaSIE (Gaizauskas et al.,
1995) that took part in the MUC competitions. PASTA has
been manually tuned to the biology domain over a consid-
erable amount of time and includes lexicons of more than
15000 biological terms split in more than 50 term classes.
In previous evaluations the terminology analysis compo-
nent of PASTA was found to compare favourably with NE
results in the MUC conferences (88% recall and 94% pre-
cision overall for all term classes used in the system).

In summary, the main information sources of PASTA
for term recognition and classification in the biochemical
domain are case-insensitive terminology lexicons, the list-
ing of component terms of various classes, morphological
cues (mainly standard biochemical suffixes) and specialised
grammar rules for each terminology class.

The PASTA terminology processing component con-
sists of a pipeline architecture of the following four pro-
cessing stages:

I. Text Preprocessing

II. Morphological Analysis

III. Terminology Lookup

IV. Terminology Parsing



The text preprocessing stage provides information
about the structure of the text and applies tokenisation pat-
tern matching rules to identify the individual text units in
terms of words or subword units.

The morphological analysis stage identifies the root
form and suffix for each token using a general English
morphological analyser that has been supplemented with
100 biomedical suffixes (such as ’-ase’, ’-in’ or ’yl’) which
are used as morphological cues in the terminology parsing
stage.

In the terminology lookup stage, lexicons assembled
from publicly available resources, are used for looking up
the biochemical terms in the text. In total, the number of
terms in the various lexicons exceeds 20,000 for all the ter-
minological classes. With regard to protein names, the sys-
tem currently includes more than 2000 protein names and
more than 3000 component terms of protein names. Be-
cause for multi-word names there is an increased probabil-
ity for different spellings or name variations, the terminol-
ogy lookup component is coupled with a rule-based termi-
nology parser.

The use of a terminology parser requires the names of
proteins (or other entities in the domain) to be decomposed
into constituent parts. These constituents have either been
matched separately during the term lookup phase, or have
specific properties that have been identified during the to-
kenisation or morphological analysis stages. For example,
the protein name serine carboxypeptidase IIwould
be recognised firstly by the classification of serine as a
potential amino acid residue, and II as a protein modifier,
both by being matched in the terminology lexicons. Mor-
phological analysis would identify carboxypeptidase as
being a potential protein head, due to the suffix -ase, and
then grammar rules would apply to combine the protein
head with a residue and with a known protein modifier. The
set of rules is derived semi-automatically using the multi-
word names in the protein lexicons and currently includes
about 160 rules.

The terms discovered by the bootstrapping algorithm
were added to the PASTA terminological modules both
for augmenting the existing lexicons and for deriving new
grammar rules. As baselines for system evaluation, we first
ran the original PASTA with and without the terminology
parsing module.

The results of the experiments are given in table 2. With
the rule-based parser switched off, we wanted to evaluate
the contribution of the new terms when only the termi-
nology lookup component is used for term identification.
The baselines for the the terminology lookup component
of the PASTA system are 31% recall and 97% precision.
The low recall rate highlights the insufficiency of the sim-
ple lookup procedure in matching multi-word names in the
texts. When the new terms were added to the system, recall
increased to 38% while precision dropped to 96%.

An investigation into the incorrect answers has revealed
that nearly all of the errors can be attributed to the terms
apo (apoprotein) and holoenzyme which were not tagged
as proteins because they appeared as part of other protein
names in the evaluation texts (although these two names
were found as proteins on their own in other texts).

With the terminology parser switched on, we evaluated
the overall contribution of the new terms in the PASTA ter-
minology identification subsystem. The baseline for the
original PASTA system with the grammar rules is 87% re-
call and 97% precision. When the new terms were used
together with the old grammar rules there was an increase
in terms of recall (90%) with a small decrease in precision
(again 96%). In a another experiment, new rules were de-
rived from the terms and were added to the old rules but
there was no observable difference from the previous re-
sults (i.e. 90% recall, 96% precision). An explanation for
this may be that the old rule set had already proved to have
quite good coverage (at least for the texts used in our tests)
and the new terms represent only a fraction of the total num-
ber of terms used in PASTA so that they could not make a
significant contribution in deriving new rules.

The above results indicate that, overall, the new names
can make a contribution to the term identification capabil-
ities of the system but only in terms of recall. There is a
small decrease in terms or precision, which is probably to
be expected since with the addition of new terms may re-
sult in more erroneous entries and more ambiguities in the
lexicon.

System Configuration REC PRE

Original lexicons 31 97
Original lexicons + new terms 38 96
Original lexicons + rules 87 97
Original lexicons + rules + new terms 90 96
Original lexicons + new terms + new rules 90 96

Table 2: Evaluation of term recognition in PASTA

6. Conclusions
In this paper, we have described an approach for the

automatic acquisition of terminology from untagged texts.
Based on the distributional hypothesis that terms of a se-
mantic class occur in similar contextual patterns, a boot-
strapping algorithm was developed. The algorithm uses a
set of seed terms to identify contextual patterns which are
in turn used to extract new terms iteratively.

The output of the system could provide input to a semi-
automatic process for extending the terminological lexicons
for the domain and therefore assist in the portability or
adaptability of natural language processing systems to new
domains. The advantage of this method is that it does not
depend for training on tagged corpora or linguistic tools
such as syntactic and semantic taggers which usually are
costly and time-consuming to produce.

The results of the experiments with biological text re-
sources demonstrate the viability of the proposed method
for acquiring new terms from domain restricted texts. For
our texts, the accuracy of the method ranged from 58% to
71%, depending on the interpretation of the results.

This approach may not be limited to augmenting exist-
ing lexicons of terms but could also be profitable in term
recognition and classification tasks. On the other hand, we
must be aware of the limitations of such a simple method
which is based just on statistical information. It was found



that the algorithm will often pick common words or ex-
pressions as domain specific terms (mainly those used for
coreference in the texts) and it is not clear what the best
strategy can be for detecting and filtering out such terms
during bootstrapping.

The new terms were found to make a positive contribu-
tion to the recall rate of our IE system albeit with a minimal
negative effect on its precision. It is unlikely though, even
with a large augmentation of the existing lexicons, that the
precision and recall rates would approach 100% since new
terms will continue to be added to the vocabulary and any
lexicon will almost always include occasional errors.

There are opportunities for further development and
testing of the technique. We plan to test its applicability
with more term classes and new domains. It would be in-
teresting to investigate whether such an approach can help
in the discovery of patterns that describe domain specific
relations. One possibility is to employ a bootstrapping al-
gorithm for identifying representative patterns that may de-
scribe, for instance, that a protein comes from a species or
that a residue is found in a protein. The generation of such
patterns automatically can be useful for discourse mod-
elling purposes and the rapid adaptation of NLP systems
to new applications.
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