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Abstract
The COST 249 SpeechDat reference recogniser is a fully automatic, language-independent training procedure for building a phonetic
recogniser. It relies on the HTK toolkit and a SpeechDat(II) compatible database. The recogniser is designed to serve as a reference
system in multilingual recognition research. This paper documents version 0.95 of the reference recogniser and presents results on small
and medium vocabulary recognition for five languages.

1. Introduction

Within the EU supported COST 249 action “Continu-
ous speech recognition over the telephone”, collaborative
efforts have been devoted to the promotion and dissemina-
tion of speech recognition research results in a multilingual
environment. The aim is to cooperate across tasks and lan-
guages to improve the state-of-the-art, and to focus on what
are considered to be major research problems within speech
recognition: robustness and multilinguality.

The first step in this work has been to set up proce-
dures for reference recogniser training and benchmark test-
ing, with a minimal dependency on the language, task and
application. The procedures rely on databases in a stan-
dardised format being commonly available for a number of
languages. With such a reference recogniser, large develop-
ment efforts to build a state-of-the-art speech recognition
system for each new language can be avoided. It is also
possible to indirectly compare error rates between different
tasks and languages.

The SpeechDat(II) databases and standards (Höge et al.,
1999) were chosen as the source of multilingual speech data
and as a standard regarding speech files, label files, annota-
tion conventions, lexica, et cetera, since a significant num-
ber of SpeechDat(II) compatible databases are now avail-
able world-wide.

Previous work on reference recogniser development in-
cludes the now concluded projects COST 232, CAVE and
PICASSO as well as the COST 250 project on ”Speaker
Recognition in Telephony”. Also in (Schultz and Waibel,
1998) efforts towards handling of multiple languages are
being presented. However, with the present SpeechDat-
based reference recogniser, it is possible to make compa-
rable results on a to this date unseen number of languages.

The automated procedure applied in this project creates
a set of acoustic phoneme models directly from the Speech-
Dat(II) CD-ROMs using the language-dependent knowl-
edge embedded in the database. It is based on a boot-
strapping procedure that works without pre-segmented
data. The procedure is based on the HTK toolkit (Young
et al., 1997) and accounts for differences between lan-

guages and imperfections in database design. A test suite
representing different typical applications is also included,
along with a public web site for exchange of software and
results.

In the following sections the SpeechDat(II) database de-
sign is briefly presented, followed by a description of the
reference recogniser design and the benchmark test proce-
dures. Finally results are presented and discussed.

2. The SpeechDat(II) databases
Within the SpeechDat(II) project (Ḧoge et al., 1999)

a total of 28 databases have been collected covering
eleven European languages as well as some major dialec-
tal variants and minority languages. 20 databases have
been recorded over the fixed telephone network (FDB), 5
databases over the mobile network (MDB), and 3 databases
have been designed for speaker verification via telephone
(SDB). The recordings of the FDB and MDB databases
cover between 500 and 5000 calls by different speakers
being recorded in a single session (except for two MDBs
using multiple sessions). The duration of each recording
session was 4-8 minutes.

The databases are intended to be used for developing a
number of applications such as information services (e.g.
timetable information), transaction services (e.g. home
shopping, home banking) and other call processing ser-
vices.

The three different types of SpeechDat(II) databases
(FDB, MDB and SDB) share a core of roughly 40 utterance
types as shown in Table 1.

SpeechDat(II) compatible databases have been or are
being recorded in SpeechDat(E) (FDBs for five cen-
tral and eastern European languages), SALA (Speech-
Dat across Latin America), SpeechDat-Car (SpeechDat
databases recorded in a car environment) and for Australian
English (Ḧoge et al., 1999).

3. Recogniser design
The reference recogniser training procedure is an ex-

tension of the HTK tutorial example in (Young et al.,



number type corpus code

1 isolated digit items I
5 digit/number strings B,C
1+ natural number(s) N
1 money amounts M
2 yes/no questions Q
3+ dates D
2 times T
3 application keywords/keyphrases A
1 word spotting phrase E
5 directory assistance names O
3 spellings L
4+ phonetically rich words W
9 phonetically rich sentences S

40+ In total

Table 1: Core utterance types for SpeechDat(II) databases

1997). Decision-tree state clustered, word-internal context-
dependent phonetic HMMs are trained from orthographic
(word-level) transcriptions using a pronunciation lexicon
and a “flat start” boot-strapping procedure. The training
procedure is implemented mainly as a set of Perl scripts
running on Unix platforms.

The training procedure starts by importing a Speech-
Dat(II) database. The SpeechDat files needed are the A-law
speech files, the SAM format label files, the pronunciation
lexicon file and the test session list file specifying a list of
the 200 or 500 official test sessions, depending on the size
of the database.

The test sessions are of course excluded from training.
In addition to this, 10% of the training sessions are reserved
for development testing. All subcorpora of different utter-
ance types are included since this was found useful in (Jo-
hansen, 1998).

Individual utterances are discarded if their annotated
content indicates the necessity. In particular, all utter-
ances containing intermittent noise (marked as [int]), trun-
cated recordings (�), mispronunciations (*), unintelligible
speech (**), filled pauses ([fil]), and phonetic letter pronun-
ciations (/ /) are removed from the training set. The noise
markers for stationary noise ([sta]), speaker noise ([spk]),
and filled pauses ([fil]) are currently ignored.

The acoustic features are conventional 39-dimensional
MFCCs, including the zero’th cepstral coefficientC0 as en-
ergy, as well as first and second order deltas, as specified in
(Young et al., 1997) and summarised in Table 2. These
features are suitable for real-time operation, but are not op-
timised to be robust for telephone speech or mobile phones
in particular.

The SpeechDat(II) lexica are used to provide phonemic
transcriptions for supervised training. Optional prosodic
information is removed from the lexicon. A language-
dependent phonetic mapping can optionally be specified to
avoid modelling very rare phonemes.

Each (mapped) phoneme is modelled as a three state
left-to-right HMM, with no skip transitions. Diagonal co-
variance Gaussians are used. Tied silence and tee models
(models having a non-zero entry to exit transition probabil-
ity) are added as described in (Young et al., 1997), to take

Pre-emphasis 0.97
Frame shift 10 ms
Analysis window Hamming
Window length 25 ms
Spectrum type FFT magnitude
Filterbank type Mel-scale
Filter shape Triangular
Filterbank channels 26
Cepstral coefficients 12
Cepstral liftering 22
Energy feature C0

Deltas 13
Delta-deltas 13

Total features 39

Table 2: MFCC0 D A feature set

care of both background noise and silence.
Training starts from context-independent, single Gaus-

sian monophones. All Gaussians are initially boot-strapped
unsupervised, to the global mean and variance of the train-
ing set. These “flat-start” models are then re-estimated by
the supervised embedded Baum-Welch procedure. To re-
duce the problem with unlabelled silence between words,
only the phonetically balanced sentences (subcorpus S1-9)
are used in these boot-strapping stages. A Viterbi realign-
ment is then performed on the whole training set. This al-
lows lexicon pronunciations other than the canonical ones
to be chosen and also identifies potentially erroneous anno-
tations.

The initial monophone models are successively split
and re-estimated into 2, 4, 8, 16 and 32 Gaussian mixture
components. The 32-mixture monophones are used to seg-
ment the training set in another forced alignment. The ob-
tained phoneme segment boundaries are then used to cre-
ate entirely new monophones in an isolated-word training
style. This two pass bootstrapping procedure was added in
version 0.94, and improved performance significantly com-
pared to the single pass bootstrap used in previous versions.

From the freshly initialised single-mixture mono-
phone models, training proceeds by building word-internal
context-dependent models for all triphones occuring in the
training set. Word boundaries are modelled with left- or
right-context-dependent models (biphones). The mono-
phone models are first cloned, then re-estimated with
context-dependent supervision.

In order to reduce the total number of HMM states and
improve generalisation ability, state tying is performed. A
top-down decision tree clustering approach ensures that un-
seen words can be modelled without retraining the models,
as required for flexible vocabulary recognition. The cluster-
ing algorithm optimises the likelihoods of the training data
by successively splitting nodes in a binary tree structure ac-
cording to yes/no questions regarding phonetic context.

Decision tree questions are defined by a set of broad
class definitions. In the current version, broad class defi-
nitions from five languages (Danish, English, Norwegian,
Slovenian and Swiss German) are included. Since many
of the SAMPA symbols are common between languages,



Language Train Total Train Lexicon Mono- Tri- State
(database) spkrs uttr uttr pronuns phns phns clstr

Danish FDB1000 800 34400 23216 39604* 71* 13056 7.3 %
Danish FDB4000 3500 150500 101100 39604* 71* 19032 11.5 %
Norwegian FDB1000 816 36720 20335 14826 40* 7866 8.4 %
Slovenian FDB1000 800 34392 20548 6011 39* 6613 10.8 %
Swedish FDB1000 800 38400 24827 25946 46 10689 8.6 %
Swedish MDB1000 800 41600 34346 16050 46 11876 7.8 %
Swiss German FDB1000 800* 32580 17442 30525 51* 12374 7.1 %

Table 3: Training statistics. A star (*) next to a number indicates that information external to the official SpeechDat database
was used. This is either a session list, a pronunciation lexicon, or a phoneme mapping.

and since the decision tree will automatically select the best
questions for the data, it makes sense to use the union of
broad class definitions for new languages.

As a final training stage, both the fresh monophones and
the tied state triphone models are once again improved by
Gaussian mixture splitting and reestimation up to 32 com-
ponents.

4. Test design
The models trained by the procedure above can be used

to provide benchmark results for a number of different
applications, in different languages. However, in order
to analyse the general behaviour of the models between
languages and to improve the general design, it is useful
to have a commonly defined test suite based only on the
SpeechDat(II) database itself.

For this purpose, the official SpeechDat(II) test sessions
(Chollet et al., 1998) are used, with different subcorpora
representing typical test applications. Five common tests
have so far been designed, for some of the sub-corpora in
Table 1:

� I-test: Isolated digit recognition (SVIP)

� Q-test: Yes/no recognition (SVIP)

� A-test: Recognition of 30 isolated application words
(SVIP)

� BC-test: Unknown length connected digit string
recognition (SVWL)

� O-test: City name recognition (MVIP)

For all these tests, common test procedures are used,
ensuring identical rules of test design across databases and
languages. Currently, there are three such procedures, de-
noted SVIP (Small Vocabulary Isolated Phrase), SVWL
(Small Vocabulary Word Loop) and MVIP (Medium Vo-
cabulary Isolated Phrase). Utterances with OOV, mis-
pronunciation, unintelligible speech or truncations are ex-
cluded in all procedures, since these are difficult to score
without a particular application dialogue in mind. Noise
markers are also ignored. The standard US NIST algo-
rithm (Young et al., 1997) is used when string alignment
is needed for scoring, currently only in the SVWL test pro-
cedure.

To completely specify the details of a test, the test pro-
cedure, test corpus codes and test vocabulary must be se-
lected for every database. The vocabulary may contain se-
mantic mappings, to specify that synonym confusions (e.g.
zero/oh in English) should not be counted as errors. In the
MVIP test procedure, the vocabulary can also be generated
automatically, from all (training and test) utterances in the
database. If this is done, no utterances will be considered
OOV.

In order to have a completely open experiment set-
ting, both the training and test procedures and detailed test
results are available on the public web site (COST 249
SpeechDat SIG, 2000). The intention of this site is to en-
able all researchers with access to a SpeechDat(II) database
and the HTK toolkit to repeat the experiments reported and
contribute to an improved common recogniser design.

5. Current results
Six different labs within the COST 249 community have

successfully completed the training procedure (version
0.93) for SpeechDat(II) compliant 1000-speaker databases
(Johansen et al., 1999). Here we present results for ver-
sion 0.95, obtained for five languages. First, we summarise
some training statistics in Table 3. More details are avail-
able on the web (COST 249 SpeechDat SIG, 2000).

We can see that the number of utterances actually used
during training is significantly lower than the total number
of utterances by the training speakers. Most of this reduc-
tion is due to the content filtering, and especially the re-
moval of utterances with intermittent noise. The high num-
ber of monophone models for Danish is due to the fact that
a large number of diphthongs are treated as phonemes in
the lexicon. The rightmost column in Table 3 is the reduc-
tion in effective number of states obtained by the state tying
procedure.

The various stages of the training procedure results in a
relatively large number of models. A typical evolution of
test results is shown in Figure 1, where the first-pass mono-
phones are denoted “miniM N” (M is the number of mix-
ture components and N the number of training iterations),
the second-pass monophones models are “monoM N”,
whereas “triM N” and “tied M N” are triphones and state-
tied triphone models, respectively. We see that the second-
pass monophones with a low number of Gaussian mixture
components are significantly better than the correspond-
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Figure 1: Typical performance evolution during training (Norwegian, A-test)

Language Test corpus
(database) I Q A BC O

Danish FDB1000 1.04 1.14 2.36 2.30 15.82
Danish FDB4000 0.62 1.05 2.41 2.70 14.03
Norwegian FDB1000 2.31 0.53 4.43 5.87 17.31
Slovenian FDB1000 4.15 0.87 4.86 6.14 9.33
Swedish FDB1000 1.03 0.00 1.18 2.52 12.37
Swedish MDB1000 10.50 1.13 4.04 14.22 18.59
Swiss German FDB1000 0.51 0.27 1.06 3.10 6.29

Table 4: Word error rates (in %) with refrec 0.95

ing models trained in the initial pass, although the high-
complexity monophones don’t seem to suffer from poor ini-
tial segmentation.

A summary of test results for the different databases
tried so far is given in Table 4.

It is worth noting that there is considerable variation be-
tween languages. Some of this can be related to the dif-
ferent noise levels in the telephone networks (as is illus-
trated by the difference between then Swedish FDB and
MDB), while differences in vocabulary and phoneme sets
obviously contribute significantly as well. In Table 5 and
Table 6, average word lengths for the different tests are
presented. For the O-test, the difference in test vocabulary
seems to have a significant impact on the test results. The
observed differences for the small vocabulary tests are how-
ever harder to explain by these numbers only.

When comparing the results in Table 4 to state-of-
the-art recognisers, one should remember that whole-word
modelling is not used. This will be a typical choice at least
for digit recognisers. Cross-word context dependencies are
not modelled either, and the degree of tying has not been

Language I/BC Q A

Danish 2.64 2.00 4.57
Norwegian 2.85 2.00 4.60
Slovenian 3.85 2.00 6.52
Swedish 3.33 2.50 6.23
Swiss German 3.70 2.50 6.67

Table 5: Average number of phonemes in test vocabularies

Database #Words Phonemes/word

Danish FDB1000/FDB4000 495 6.52
Norwegian FDB1000 1182 7.34
Slovenian FDB1000 597 10.36
Swedish FDB1000 905 9.29
Swedish MDB1000 869 8.96
Swiss German FDB1000 684 12.64

Table 6: O-test vocabularies



optimised. Furthermore, a lot of training data containing
noise has been removed. Thus, the silence modelling is
probably not good enough. There are still no models for
speaker noise or filled pauses either.

6. Conclusion
The reference training and test procedures presented

have shown to provide a solution to the practical/logistic
problems for the languages involved so far. The web
page set up to coordinate experiments will hopefully con-
tribute to significant progress in research on SpeechDat(II)
databases, by disseminating benchmark procedures and re-
sults obtained for different databases.

Future work will include the improvement of language
and database coverage. So far mainly the smaller Speech-
Dat(II) databases have been applied for training and testing
(1000 speaker databases) with the exception of the Danish
4000 speaker database.

Also the number of standardised tests will be extended
to cover some of the more challenging tasks represented
within the SpeechDat(II) databases. This includes large vo-
cabulary tasks such as name recognition (company and/or
person names).

With the standardised description of speaker demo-
graphics it is also possible to develop common error analy-
ses on existing tests and thus to correlate performance fig-
ures with demographic information.

Finally, the aim is to find a more general approach
to broad class partitioning and phoneme mapping, as this
is currently the only linguistic information needed by the
training procedure that can not be found in the database.
This would make the reference recogniser more universal
and ease the inclusion of new languages in the covered set
of languages.
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perl, B. Milner, D. Chaplin, K. Elenius, G. Salvi,
E. Sanders, and F. de Wet, 1999. The COST 249 Speech-
Dat multilingual reference recogniser. COST 249 MCM,
Technical Annex, Budapest.

Schultz, T. and A. Waibel, 1998. Language independent
and language adaptive large vocabulary speech recogni-
tion. In Proc. Int. Conf. Spoken Language Processing
(ICSLP). Sydney.

Young, S., D. Ollason, V. Valtchev, and P. Woodland, 1997.
The HTK book (for HTK Version 2.1). Entropic Cam-
bridge Research Laboratory.


