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Abstract
Approaches to named entity recognition that rely on hand-crafted rules and/or supervised learning techniques have

limitations in terms of their portability into new domains as well as in the robustness over time. For the purpose of

overcoming those limitations, this paper evaluates named entity chunking and classi�cation techniques in Japanese named

entity recognition in the context of minimally supervised learning. This experimental evaluation demonstrates that the

minimally supervised learning method proposed here improved the performance of the seed knowledge on named entity

chunking and classi�cation. We also investigated the correlation between performance of the minimally supervised learning

and the sizes of the training resources such as the seed set as well as the unlabeled training data.

1. Introduction

It is widely agreed that named entity recognition

is an important step for various applications of natu-

ral language processing such as information retrieval,

machine translation, information extraction and nat-

ural language understanding. In the English lan-

guage, the task of named entity recognition was one

of the tasks of the Message Understanding Conference

(MUC) (e.g., MUC-7 (MUC, 1998)) and has been stud-

ied intensively. In the Japanese language, several re-

cent conferences, such as MET (Multilingual Entity

Task, MET-1 (Maiorano, 1996) and MET-2 (MUC,

1998)) and IREX (Information Retrieval and Extrac-

tion Exercise) Workshop (IREX Committee, 1999), fo-

cused on named entity recognition as one of their con-

test tasks, thus promoting research on Japanese named

entity recognition.

In Japanese named entity recognition, it is quite

common to apply morphological analysis as a prepro-

cessing stage and to segment the sentence string into

a sequence of morphemes. Then, hand-crafted pattern

matching rules and/or statistical named entity recog-

nizer are applied to recognize named entities. How-

ever, in named entity recognition, it is often the case

that new entities are introduced as the domain of the

texts changes, and even in the same domain, as for

newspaper articles for example, where it is quite nat-

ural to assume that entities which have never been

encountered in past articles are newly introduced in

future articles. Therefore, approaches to named entity

recognition that rely on hand-crafted rules and/or su-

pervised learning techniques have limitations in terms

of their portability into new domains as well as in the

robustness over time.

For the purpose of overcoming those limitations,

the minimally supervised approach to named entity

recognition proposed by (Collins and Singer, 1999;

Cucerzan and Yarowsky, 1999) is more promising. The

central idea of the minimally supervised approach re-

lates to bootstrapping utilizing redundancy in unla-

beled data, with the help of a minimal number of la-

beled data as initial seeds. The idea of utilizing redun-

dancy in the unlabeled data for entity tagging was pro-

posed by (Yarowsky, 1995) in the context of word sense

disambiguation, in which cross-model redundancy in

contextual features of word sense disambiguation is

exploited. This idea was then theoretically formal-

ized in the context of computational learning theory

by (Blum and Mitchell, 1998) and has been termed as

\co-training". (Collins and Singer, 1999; Cucerzan and

Yarowsky, 1999) independently applied co-training al-

gorithms to named entity classi�cation/ recognition,

both of which utilize the redundancy of morphologi-

cal and contextual evidence of named entity classi�ca-

tion/recognition.

Following this prior research which employed the

minimally supervised approach to named entity classi-

�cation/recognition, in this paper we focus on a min-

imally supervised approach to Japanese named entity

recognition. In Japanese named entity recognition,

named entities to be recognized may have di�erent

segmentation boundaries from those of morphemes ob-

tained by the morphological analysis. For example, in

our analysis of the IREX workshop's training corpus

of named entities, 44% of the named entities have seg-

mentation boundaries that di�er from boundaries ob-

tained through morphological analysis by a Japanese

morphological analyzer breakfast (Sassano et al.,

1997) (section 2.). Thus, in Japanese named entity

recognition, the most di�cult problems include this is-

sue of how to recognize such named entities that have a

segmentation boundary mismatch in terms of the mor-



phemes obtained by morphological analysis. Further-

more, in almost 90% of cases of segmentation bound-

ary mismatches, named entities to be recognized can

be decomposed into several morphemes as their con-

stituents. This means that the problem of recognizing

named entities in those cases may be solved by in-

corporating techniques of base noun phrase chunking

(boundary detection) (Ramshaw and Marcus, 1995;

Mu~noz et al., 1999).

In this paper, we focus on both the issues of named

entity chunking and classi�cation in Japanese named

entity recognition, and evaluate named entity chunk-

ing techniques in the context of minimally supervised

learning. First, as a supervised learning method, we

employ the supervised decision list learning method

of (Yarowsky, 1994), into which we incorporate sev-

eral noun phrase chunking techniques (sections 3. and

4.). We chose the decision list learning method as

the supervised learning technique because it is easy

to implement and quite straightforward to extend

a supervised learning version to a minimally super-

vised version (Yarowsky, 1994; Yarowsky, 1995; Collins

and Singer, 1999) (section 5.). Then, we applied a

minimally supervised learning algorithm to Japanese

named entity recognition, where a list of frequent

named entities are extracted from unlabeled data by

a human and fed to the learning algorithm as seeds.

The minimally supervised learning method improves

the performance of the seed knowledge on named en-

tity recognition by iteratively applying it to unseen

data unlabeled with named entity tags and e�ectively

utilizing redundancy in the unlabeled data.

The minimally supervised learning method em-

ployed in this paper is a variant of the ones based on

the supervised decision list learning (Yarowsky, 1995;

Collins and Singer, 1999), which, as discussed above,

have been applied to classi�cation tasks such as sense

disambiguation and named entity classi�cation, but

not to the full named entity chunking and classi�ca-

tion task. The results of the experimental evaluation

shows that our minimally supervised learning method

improves the performance of the seed knowledge on

named entity recognition. We also investigate the cor-

relation between performance of the minimally super-

vised learning and the sizes of the resources such as

the seed as well as the unlabeled training data. (sec-

tion 6.).

2. Japanese Named Entity

Recognition

2.1. Task of the IREX Workshop

The task of named entity recognition of the IREX

workshop is to recognize eight named entity types in

Table 1 (IREX Committee, 1999). The organizer of

the IREX workshop provided 1,174 newspaper articles

which include 18,677 named entities as the training

data. In the formal run (general domain) of the work-

shop, the participating systems were requested to rec-

ognize 1,510 named entities included in the held-out

71 newspaper articles.

Table 1: Statistics of NE Types of IREX
frequency (%)

NE Type Training Test

ORGANIZATION 3676 (19.7) 361 (23.9)

PERSON 3840 (20.6) 338 (22.4)

LOCATION 5463 (29.2) 413 (27.4)

ARTIFACT 747 (4.0) 48 (3.2)

DATE 3567 (19.1) 260 (17.2)

TIME 502 (2.7) 54 (3.5)

MONEY 390 (2.1) 15 (1.0)

PERCENT 492 (2.6) 21 (1.4)

Total 18677 1510

Table 2: Statistics of Boundary Match/Mismatch of

Morphemes (M) and Named Entities (NE)
Match/Mismatch freq. of NE Tags (%)

1 M to 1 NE 10480 (56.1)

n(� 2) Ms n = 2 4557 (24.4)

to n = 3 1658 (8.9) 7175

1 NE n � 4 960 (5.1) (38.4)

other boundary mismatch 1022 (5.5)

Total 18677

2.2. Segmentation Boundaries of Morphemes

and Named Entities

In the work presented here, we compare the seg-

mentation boundaries of named entities in the IREX

workshop's training corpus with those of morphemes

which were obtained through morphological analy-

sis by a Japanese morphological analyzer break-

fast (Sassano et al., 1997).1 Detailed statistics of the

comparison are provided in Table 2. Nearly half of

the named entities have boundary mismatches against

the morphemes and also almost 90% of the named en-

tities with boundary mismatches can be decomposed

into more than one morpheme. Figure 1 shows some

examples of those cases.2

3. Chunking and Tagging Named

Entities

In this section, we formalize the problem of named

entity chunking in Japanese named entity recognition.

3.1. Task De�nition

First, we will provide our de�nition of the task of
Japanese named entity chunking. Suppose that a se-

1The set of part-of-speech tags of breakfast consists of

about 300 tags. breakfast achieves 99.6% part-of-speech

accuracy against newspaper articles.
2In most cases of the \other boundary mismatch" in Ta-

ble 2, one or more named entities have to be recognized as

a part of a correctly analyzed morpheme and those cases

are not caused by errors of morphological analysis. One fre-

quent example of this type is a Japanese verbal noun \hou-

bei (visiting United States)" which consists of two charac-

ters \hou (visiting)" and \bei (United States)", where \bei

(United States)" have to be recognized as <LOCATION>. We

believe that boundary mismatch of this type can be easily

solved by employing a supervised learning technique such

as the decision list learning method.



Table 3: Encoding Schemes of Named Entity Chunking States
Named Entity Tag <ORG> <LOC> <LOC>

Morpheme Sequence � � � M M M M M M M M � � �

Inside/Outside Encoding O ORG I O LOC I LOC I LOC I LOC B O

Open/Close Encoding O ORG U O LOC S LOC C LOC E LOC U O

2 Morphemes to 1 Named Entity

<ORGANIZATION>

� � � Roshia gun � � �

(Russian) (army)

<PERSON>

� � � Murayama Tomiichi shushou � � �

(last name) (�rst name) (
prime

minister
)

3 Morphemes to 1 Named Entity

<TIME>

� � � gozen ku ji � � �

(AM) (nine) (o'clock)

<ARTIFACT>

� � � hokubei jiyuu-boueki kyoutei � � �

(
North

America
) (free trade) (treaty)

Figure 1: Examples of Boundary Mismatch of Mor-

phemes and Named Entities

quence of morphemes are given as below:

(
Left

Context
) (Named Entity) (

Right

Context
)

� � �M
L
�k � � �M

L
�1 M

NE
1 � � �MNE

i � � �MNE
m M

R
1 � � �M

R
l � � �

"

(Current Position)

Then, given that the current position is at the mor-

pheme MNE

i
, the task of named entity chunking is to

assign a chunking state (to be described in section 3.2.)

as well as a named entity type to the morphemeMNE

i

at the current position, considering the patterns of

surrounding morphemes. Note that in the supervised

learning phase we can use the chunking information

on which morphemes constitute a named entity, and

which morphemes are in the left/right contexts of the

named entity.

3.2. Encoding Schemes of Named Entity

Chunking States

In this paper, we use the following two methods for

encoding chunking states of named entities. Examples

of those encoding schemes are shown in Table 3.

3.2.1. Inside/Outside Encoding

The Inside/Outside scheme of encoding chunking

states of base noun phrases was studied by (Ramshaw

and Marcus, 1995; Mu~noz et al., 1999). Their scheme

distinguishes the following three states: O { the word at

the current position is outside any base noun phrase.

I { the word at the current position is inside some

base noun phrase. B { the word at the current posi-

tion marks the beginning of a base noun phrase that

immediately follows another base noun phrase. We ex-

tend this scheme to named entity chunking by further

distinguishing each of the states I and B into eight

named entity types.3 Thus, this scheme distinguishes

2� 8 + 1 = 17 states.

3.2.2. Open/Close Encoding

The Open/Close scheme of encoding chunking

states of named entities was employed in (Sekine et al.,

1998; Borthwick et al., 1998). A similar scheme is also

studied in (Mu~noz et al., 1999) in the context of base

noun phrases chunking. This scheme distinguishes the

following four states for each named entity type: S {

the morpheme at the current position marks the be-

ginning of a named entity consisting of more than one

morpheme. C { the morpheme at the current position

marks the middle of a named entity consisting of more

than one morpheme. E { the morpheme at the current

position marks the ending of a named entity consisting

of more than one morpheme. U { the morpheme at the

current position is a named entity consisting of only

one morpheme. The scheme also considers one addi-

tional state for the position outside any named entity:

O { the morpheme at the current position is outside

any named entity. Thus, in this setting, our scheme

distinguishes 4� 8 + 1 = 33 states.

3.3. Preceding/Subsequent Morphemes as

Contextual Clues

In this paper, we employ the model used in (Sekine

et al., 1998; Borthwick et al., 1998) as that of consid-

ering preceding/subsequent morphemes as contextual

clues to named entity chunking/tagging.4 Here we pro-

vide a basic outline of the model, and the details of how

to incorporate it into the decision list learning frame-

work will be described in section 4.2.2..
Suppose that the current position is at the mor-

phemeM0, as illustrated below. Then, when assigning
a chunking state as well as a named entity type to
the morpheme M0, the model considers the preceding
single morpheme M�1 as well as the subsequent one

3We allow the state x B for a named entity type x only

when the morpheme at the current position marks the be-

ginning of a named entity of the type x that immediately

follows a named entity of the same type x.
4In (Sassano and Utsuro, 2000), we proposed and eval-

uated a novel model that incorporates richer contextual

information as well as patterns of constituent morphemes

within a named entity.



morpheme M1 as the contextual clue.

(
Left

Context
) (

Current

Position
) (

Right

Context
)

� � � M�1 M0 M1 � � � (1)

4. Supervised Learning for Japanese

Named Entity Recognition

This section describes how to apply the decision list

learning method to chunking/tagging named entities.

4.1. Decision List Learning

A decision list (Rivest, 1987; Yarowsky, 1994) is a

sorted list of the decision rules each of which decides

the value of a decision D given some evidence E. Each

decision rule in a decision list is sorted in descending

order with respect to some preference value, and rules

with higher preference values are applied �rst when

applying the decision list to some new test data.

First, the random variable D representing a deci-

sion varies over several possible values, and the ran-

dom variable E representing some evidence varies over

`1' and `0' (where `1' denotes the presence of the cor-

responding piece of evidence, `0' its absence). Then,

given some training data in which the correct value of

the decision D is annotated to each instance, the con-

ditional probabilities P (D=x j E=1) of observing the

decision D=x under the condition of the presence of

the evidence E (E=1) are calculated and the decision

list is constructed by the following procedure.

1. For each piece of evidence, calculate the log of like-

lihood ratio of the largest conditional probability
of the decision D=x1 (given the presence of that
piece of evidence) to the second largest conditional
probability of the decision D=x2:

log2
P (D=x1 j E=1)

P (D=x2 j E=1)

Then, a decision list is constructed with pieces of

evidence sorted in descending order with respect

to their log of likelihood ratios, where the decision

of the rule at each line is D=x1 with the largest

conditional probability.5

2. The �nal line of a decision list is de�ned as `a
default', where the log of likelihood ratio is calcu-
lated as the ratio of the largest marginal proba-
bility of the decision D=x1 to the second largest

5(Yarowsky, 1994) discusses several techniques for

avoiding problems which arise when an observed count is

0. From among those techniques, we employ the simplest

one, i.e., adding a small constant � (0:1 � � � 0:25) to the

numerator and denominator. With this modi�cation, more

frequent evidence is preferred when several evidence candi-

dates exist with the same unsmoothed conditional proba-

bility P (D=x j E=1). Yarowsky's training algorithm also

di�ers somewhat in his use of the ratio
P (D=xijE=j)

P (:D=xijE=j)
, which

is equivalent in the case of binary classi�cations, and also

by the interpolation between the global probabilities (used

here) and the residual probabilities further conditional on

higher-ranked patterns failing to match in the list.

marginal probability of the decision D=x2:

log2
P (D=x1)

P (D=x2)

The `default' decision of this �nal line is D=x1
with the largest marginal probability.

4.2. Decision List Learning for

Chunking/Tagging Named Entities

4.2.1. Decision

For each of the two schemes of encoding chunking

states of named entities described in section 3.2., as

the possible values of the decision D, we consider ex-

actly the same categories of chunking states as those

described in section 3.2..

4.2.2. Evidence
The evidence E of the decision list learning is a

combination of the features of preceding/subsequent
morphemes as well as the morpheme in the current po-
sition. The evidenceE represents a tuple (F�1; F0; F1),
where F�1 and F1 denote the features of immediately
preceding/subsequent morphemes M

�1 and M1, re-
spectively, F0 the feature of the morpheme M0 at the
current position (see Formula (1) in section 3.3.). The
de�nition of the possible values of those features F

�1,
F0, and F1 are given below, whereMi denotes the mor-
pheme itself (i.e., including its lexical form as well as
part-of-speech), Ci the character type (i.e., Japanese
(hiragana or katakana), Chinese (kanji), numbers, En-
glish alphabets, symbols, and all possible combinations
of these) of Mi, Ti the part-of-speech of Mi:

F�1 ::= M�1 j (C�1; T�1) j T�1 j null

F1 ::= M1 j (C1; T1) j T1 j null

F0 ::= M0 j (C0; T0) j T0

As the evidence E, we consider each possible combi-

nation of the values of those three features.

4.3. Procedures for Training and Testing

Next we will brie
y describe the entire process

of supervised learning the decision list for chunk-

ing/tagging named entities as well as applying it to

chunking/tagging unseen named entities.

4.3.1. Training

In the training phase, at each morpheme position,

as described in the section 4.2., each allowable com-

bination of features is considered as the evidence E.

Then, the frequency of each decision D and evidence E

is counted and the decision list is learned as described

in section 4.1..

4.3.2. Testing

When applying the decision list to chunk-

ing/tagging unseen named entities, �rst, in each mor-

pheme position, the combination of features is consid-

ered as in the case of the non-entity position in the

training phase. Then, the decision list is consulted

and all the decisions of the rules with a log of likeli-

hood ratio above a certain threshold are recorded. Fi-

nally, as in the case of previous research (Sekine et al.,



<PERSON> <PERSON>

� � � Murayama Tomiichi shushou ha Kooru shushou to � � �

(last name) (�rst name) (
prime

minister
) (Topic) (last name) (

prime

minister
) (with)

Figure 2: The Basic Idea of Utilizing Redundancy in the Minimally Supervised Learning

1998; Borthwick et al., 1998), the most appropriate

sequence of the decisions that are consistent through-

out the whole sequence is searched for. By consis-

tency of the decisions, we mean requirements such as

that the decision representing the beginning of some

named entity type has to be followed by that repre-

senting the middle of the same entity type (in the case

of the Open/Close encoding). Also, in our case, the

appropriateness of the sequence of the decisions is mea-

sured by the sum of the log of likelihood ratios of the

corresponding decision rules.

5. Minimally Supervised Learning

5.1. The Basic Idea of Utilizing Redundancy

The following example describes how to utilize re-

dundancy in the unlabeled data in the minimally su-

pervised learning.

Suppose that the sequence of morphemes in Fig-

ure 2 is included in an unlabeled data set, where the

names of the prime ministers of Germany and Japan

need to be recognized as <PERSON>s. Both of the two

names are followed by a noun representing the social

position, i.e., in this case, \shushou" (prime minister).

In the Japanese language, the name of a person at a

certain social position is followed by a noun represent-

ing the position, as in the case of \President Clinton"

in English. Also suppose that, as a seed, the learner is

given the name of Japanese prime minister \Murayama

Tomiichi" as a <PERSON> named entity. Then, the al-

gorithm can learn the following decision rule from this

seed and unlabeled data in Figure 2.

If X is followed by \shushou" (prime minister),

then X is <PERSON>.

By applying this decision rule to \Kooru", the al-

gorithm can easily annotate \Kooru" as a <PERSON>

named entity. In this case, the redundancy of the

seed knowledge and a reliable contextual clue at the

named entity position \Murayama Tomiichi" is the key

to bootstrapping in minimally supervised learning.

5.2. Learning Algorithm

In following section we provide our minimally su-

pervised learning algorithm, which uses a list of named

entities as seeds and a large amount of unlabeled data,

but not use any labeled data.

1. Initialization

Seed Selection

First, a list of frequent named entities are extracted

from the result of the morphological analysis of unla-

beled data. This is done by a human who consults the

de�nition of the named entity tags if necessary.

Converting Seeds into the Initial Decision List

Then, the list of frequent named entities is con-

verted into a decision list which is to be used as an

initial decision list in the minimally supervised learn-

ing.

2. Minimally Supervised Learning

The following application and training iteration is

iterated and the changes in precision, recall, and f-

measure against held-out data labeled with named en-

tity tags are observed.

Applying Decision List to Unlabeled Data

Usually, in the case of supervised learning, the best

performance against test data is obtained when only

those rules with a log of likelihood ratio above a cer-

tain threshold are considered. However, in our experi-

mental results, the best performance in the minimally

supervised learning was obtained when all the rules in

the decision list were considered at each step of the

training iteration. The results of minimally supervised

learning reported in this paper, then, are those ob-

tained without a threshold in the decision lists.

Learning Decision List

A new decision list is learned from the data with

named entity tags annotated by the decision list

learned in the previous step. The data may contain

errors of named entity recognition.

6. Experimental Evaluation

We next experimentally evaluate the performance

of the supervised and minimally supervised learning

for Japanese named entity recognition on the IREX

workshop's training and test data. In this evaluation,

we exclude the named entities with \other boundary

mismatch" in Table 2.

6.1. Comparison of Named Entity Chunking

Methods

First, we compare the performance of the two en-

coding schemes of named entity chunking states (the

Inside/Outside and the Open/Close encoding schemes)

in full supervised and minimally supervised learning.

6.1.1. Supervised Learning

For each of those encoding schemes, a decision list

is learned by full supervised learning from the IREX

workshop's training data and evaluated against the

IREX workshop's test data. We searched for an op-

timal threshold of the log of likelihood ratio in the de-

cision list. The performance of each encoding scheme

measured by f-measure (� = 1)/precision/recall is

given in Table 4. We classi�ed the system output ac-

cording to the number of constituent morphemes of

each named entity and evaluate the performance for

each subset of the system output. For each subset and



Table 4: Evaluation Results of Supervised Learning

n Morphemes to 1 Named Entity

n � 1 n = 1 n = 2 n = 3 n � 4

F-measure (� = 1) 72.9 75.4 79.7 51.4 29.2

Inside/Outside (Precision) (72.7) (68.0) (78.2) (74.7) (87.5)

(Recall) (73.1) (84.7) (81.1) (39.2) (17.5)

F-measure (� = 1) 72.7 76.1 79.5 43.7 29.6

Open/Close (Precision) (76.7) (71.8) (82.2) (79.6) (95.5)

(Recall) (69.0) (81.0) (77.0) (30.1) (17.5)

the whole set, we show the higher performance in f-

measure with bold-faced font.

The Inside/Outside encoding scheme achieves

slightly better performance in total f-measure and sig-

ni�cantly better in f-measure of the \n = 3" sub-

set, while the Open/Close encoding scheme achieves

slightly better performance in f-measure of \n = 1"

and \n � 4" subsets. The Inside/Outside encoding

scheme achieves better performance in recall, while the

Open/Close encoding scheme achieves better perfor-

mance in precision. This di�erence in precision/recall

is consistent with the degree of generalization of the

two encoding schemes.

6.1.2. Minimally Supervised Learning

Next, we simulate the minimally supervised learn-

ing algorithm of section 5.2. by taking a small por-

tion of highly ranked decision rules learned by super-

vised learning as seeds. First, from the �rst half of

the IREX workshop's training data, a decision list is

learned by supervised learning. Then, top 100 and

500 rules are extracted from the decision list as seeds

of minimally supervised learning, and the minimally

supervised learning algorithm is run with the other

half of the IREX workshop's training data (containing

about 9,300 named entities) as the unlabeled train-

ing data by ignoring the annotated named entity tags.

The whole decision list learned by supervised learn-

ing has approximately 60,000 rules for both the In-

side/Outside and the Open/Close encoding schemes

and the top 500 rules are those without ambiguities

of decisions (i.e., the unsmoothed conditional proba-

bility P (D = x j E = 1) equals to 1). Figure 3 shows

the results of comparing the performance changes (in

f-measure (� = 1)) of the two encoding schemes in the

minimally supervised learning.

This results clearly shows that the initial perfor-

mance of the Inside/Outside encoding scheme is bet-

ter than that of the Open/Close encoding scheme

with the same number of decision rules. Also with

respect to the maximum f-measure throughout the

training iteration, the Inside/Outside encoding scheme

achieves better performance than the Open/Close en-

coding scheme. One of the obvious advantages of the

Inside/Outside encoding scheme over the Open/Close

encoding scheme is that the former can generalize de-

cision rules among named entities consisting of dif-

ferent number of morphemes, while the latter can

not generalize decision rules between those consist-
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Figure 3: Comparison of Inside/Outside and

Open/Close Encoding Schemes in Minimally Super-

vised Learning

ing of one morpheme and those consisting of more

than one morpheme. The generalization ability of the

Inside/Outside encoding scheme is particularly e�ec-

tive in minimally supervised learning where the data

sparseness problem easily occurs. From this result, we

conclude that the Inside/Outside encoding scheme is

more suitable for minimally supervised learning and

the rest of our evaluation is carried out with the In-

side/Outside encoding scheme.

6.2. Minimally Supervised Learning with

Inside/Outside Encoding Scheme

Japanese named entity chunking and tagging with

the Inside/Outside encoding scheme was evaluated in

the minimally supervised learning of section 5.2.. In

this evaluation, a list of frequent named entities con-

sisting of one morpheme is extracted as seeds by a hu-

man from the �rst half of the IREX workshop's train-

ing data without referring to the named entity tags

annotated to the original training data. Then, the

minimally supervised learning algorithm is run with

the other half of the IREX workshop's training data

as the unlabeled training data. The performance of

the learned decision list is evaluated against the IREX

workshop's test data.
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(b) F-measure Classi�ed by the Number of

Constituent Morphemes
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Figure 4: Performance Changes across Minimally Su-

pervised Training Iteration

6.2.1. Changes of

Precision/Recall/F-measure in

Training Iteration

First, for the case where the most frequent 200 seed

named entities are used, Figure 4 shows the changes

of precision/recall/f-measure in the iteration of mini-

mally supervised learning (Figure 4 (a)) as well as the

changes of f-measure classi�ed according to the number

of constituent morphemes of each named entity (Fig-

ure 4 (b)). These performance are measured against

the unlabeled training data. The curve of Figure 4 (a)

represents a typical performance changes in the min-

imally supervised learning, in that the recall and the

f-measure dramatically increases, while the precision

decreases. One of the remarkable results of Figure 4

(b) which has to be pointed out is that the perfor-

mance for the \1 named entity to 2 morphemes" and \1

named entity to 3 morphemes" increases even though

each named entity in the seed list consists of exactly

one morpheme. This result clearly supports the claim

that the Inside/Outside encoding scheme can general-

ize decision rules among named entities consisting of

di�erent number of morphemes.

(a) Seeds Selected by Frequency Balanced Sampling
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(b) Seeds Selected in Decreasing Frequency Order
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Figure 5: Performance at Di�erent Seed Sizes

6.2.2. Evaluation at Di�erent Resource Sizes

Next, we evaluate minimally supervised learning at

di�erent sizes of seed named entities as well as of un-

labeled training data.

First, we change the number of seed named entities

as 50, 100, 200, 500, and 1000, and run the minimally

supervised learning algorithm and plot the maximum

f-measure value throughout the training iteration for

each seed size. Figure 5 (a) shows the result when

the seed named entities are selected so that their fre-

quency counts are balanced among di�erent seed sizes,

while Figure 5 (b) shows that when the most frequent

named entities are selected as seeds. In Figure 5 (a),

the maximum f-measure value increases roughly loglin-

early with the number the seed named entities, which

is consistent with the results reported in (Cucerzan and

Yarowsky, 1999). In Figure 5 (b), on the other hand,

the maximum f-measure value stops to increase when

the number of the seed named entities is 500, simply

because the larger seed lists are constructed by adding

less frequent named entities to the smaller seed lists.

Second, we change the size of the unlabeled training

data and run the minimally supervised learning algo-

rithm with 200 most frequent named entities as seeds

and plot the maximum f-measure value throughout the

training iteration for each unlabeled training data size.

Figure 6 (a) shows the result when the maximum f-
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(b) Unlabeled Training Data
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Figure 6: Performance at Di�erent Unlabeled Data

Sizes

measure value is measured against the held-out IREX

workshop's test data, while Figure 6 (b) shows that

when the the maximum f-measure value is measured

against the training unlabeled data. In Figure 6 (a),

the maximum f-measure value slightly increases due

to increases in precision, as the size of the unlabeled

training data increases, which is consistent with the re-

sults reported in (Cucerzan and Yarowsky, 1999). This

paper claims that if more unlabeled data are available,

more accurate rules for named entity recognition will

be learned by minimally supervised learning. In Fig-

ure 6 (b), on the other hand, the maximum f-measure

value against the unlabeled training data decreases

with the size of the unlabeled training data. This is

because as the unlabeled training data set becomes

larger, the unlabeled training data tends to include

more infrequent named entities that are more di�cult

to recognize than frequent named entities.

7. Conclusion

This paper evaluated named entity chunking and

classi�cation techniques in Japanese named entity

recognition in the context of minimally supervised

learning. The experimental evaluation showed that our

minimally supervised learning method improves the

performance of the seed knowledge on named entity

recognition. We also investigated the correlation be-

tween performance of the minimally supervised learn-

ing and the sizes of the resources such as the seed

as well as the unlabeled training data. We are now

working on incorporating the model of (Sassano and

Utsuro, 2000) into minimally supervised learning envi-

ronments, where richer contextual information as well

as patterns of constituent morphemes within a named

entity are considered. The results of this experimental

evaluation will be reported in the near future.
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