
The Universal XML Organizer: UXO

Jan-Torsten Milde, Markus Reinsch

Computational linguistics and text-technology group,
Fakultät für Linguistik und Literaturwissenschaft, Universität Bielefeld

Bertelsmann Lexikonverlag
email: milde@coli.uni-bielefeld.de, Markus.Reinsch@bertelsmann.de

Abstract

The integrated editor UXO is the result of ongoing research and development of the text-technology group at Bielefeld. Being a full
featured XML-based editing system, it also allows to combine the structured annotated data with information imported from
relational databases by integrating a JDBC interface. The mapping processes between different levels of annotation can be
programmed either by the integrated scheme interpreter, or by extending the functionality of UXO using the predefined Java API.

1. System architecture

The integrated editor UXO is the result of ongoing
research and development of the text-technology group at
Bielefeld. The system is an integrated XML-based text
editor, which is configurable to a large degree and can so
be easily adapted to specific user needs. The editor has
been implemented in Java making it possible to execute it
on a large number of platforms.

UXO allows to enter the data either by typing in text
or by working directly on the displayed structure tree.
The structure can be validated by starting the inbuild
XML parser (XML4J, IBM). In contrast to standard XML
tools available, UXO offers an integrated interface to
relational databases in combination with a build-in
interpreter for the scheme programming language, used
as the systems scripting language. This combination
allows to configure the editor for a wide range of varying
applications simply by defining control/configuration
scripts. As these scripts are external to editor,
reconfiguration does not mean to recompile the system.
More experienced programmers are able to extend the
permanent features of UXO using the powerful API. In
principle this API allows to integrate any Java
functionality available (see also Reinsch and Milde
(2000), Milde (1999)).

The editor manages the full Unicode character set
(Unicode, 1996). Its graphical user interface can be
completely reconfigured allowing to localize the software
and define appropriate control key sequences.

Figure 1 shows the basic system architecture.
Internally all data is handled as a DOM instance. It is
possible to map database requests (via JDBC, see Klute
(1998)), servlet requests (via HTTP) and XML documents
onto this model. The editor allows to modify the content
of a document and to validate its structure.

Figure 1: The basic architecture of the system: DOM
is used as a central data structure. Database requests,
servlet requests and XML-annotated documents are
mapped onto a DOM which can then be edited using the
UXO editor. Mapping rules are defined using the build-
in scripting language (scheme). Alternatively UXO can
be extended using the Java API.

2. User Interface

UXO is equipped with a GUI (see figure 2) which is
comparable to the ones used in standard XML tools. The
main window is split into two content frames displaying a
tree structured view and a linear view of the document
content. The third frame is used to display status
messages. A menu and a button bar allow to access the
most important functions of the editor. Other function are
activated via control key sequences. The complete GUI
(menu entries, messages boxes, control keys, button bar,
icons etc.) can be reconfigured by modifying a single
external property file. The syntax of the property follows
standard JAVA convention and is human readable.

Figure 2: The main window of UXO. The upper left
frame displays a tree structured view of the document, the
upper right frame displays the XML-annotated linear
version. The user is able to enter and modify the
document in both views. The lower frame displays status
messages (e.g. database requests performed by the
system).

All interactions with UXO are guided by the graphical
user interface. Dialog boxes, list boxes etc. are defined to
help the user concentrate on her work, rather then coping
with the difficulty of controlling the system. The user is
presented a standard linear version of the loaded text as
well as a tree view, allowing to navigate in a very
efficient way even in large texts.

3. Database Access

Two main approaches can be distinguished for
combining SGML and database technology: extensions of
existing query languages and specially designed query
languages. Extensions of existing query languages have
been developed within a number of projects intended to
integrate textual components into classical DBMS: Blake
(1994) extends standard SQL to access SGML
documents, Christophides (1994) proposes an extension
of O2SQL, Yan (1994) presents OSQL and Volz (1996)
applies a loose coupling of existing DBMS and
Information Retrieval Systems, Le Maitre et.al. (1998)
describe SgmlQL, integrating SQL calls into standard
SGML-documents. One of the most well known specially
designed query language is HyQ, the HyTime query
language (see DeRose 1994).

Designing an extension of a query languages or
designing new query languages from scratch has the
disadvantage of loosing the compatibility to well defined
standards. In UXO a different approach is taken: bi-
directional functions encoded in a standard programming
language (scheme) map between the relational data base
entries and the tree structured XML-annotated document
instances. So, instead of extending the SGML/XML
syntax, we have integrated SQL into the underlying
scripting language.

1.1 Scripts
Using scripts is a central feature in UXO. We have

decided to incorporate a scheme interpreter into the

system.
The used scheme interpreter (see Bothner (1998a),

Bothner (1998b)) is entirely written in Java and makes it
possible to define very compact and powerful scripts. It
also implements part of the DSSSL syntax, allowing to
process SGML/XML documents. Scripts are used in two
ways in UXO:

1. As an editor script, allowing to extend/configure
the basic functionality of the editor (e.g. integrating
database information, define complex keyboard macros,
extending/adapting the GUI to specific application need
etc.):

0 (replace-current-word

1 (string-append "xxx"

2 (get-current-word)

3 "yyy"))

Script 1: A simple Script which replaces (line 1) the word
at the current cursor position (lines 1-3) with the
concatenation of this word and some new characters.

The example script 1 is a simple script, which simply
takes part of the content of the document (get-
current-word), prepends „xxx“ and appends „yyy“ to
it. Please note that the current word is identified by the
caret position, independent from the view mode (linear or
tree) currently chosen. A set of about 100 different
functions have been implemented, allowing to manipulate
the editors content, to request information about the
content, to modify the user interaction, to convert
different data types, to debug the scrips, to generate XML
markup, to transform DOM objects and finally to perform
database transactions (see Reinsch (2000)).

Editor scripts are used in UXO in the same way they
are used in comparable editors (e.g. Emacs). They simply
define configurable macros that can be connected to
specific keystrokes or certain elements of the graphical
user interface. Editor scripts can also be used to extend
the GUI of the Editor. Standard dialog boxes, message
boxes or input masks can be defined without any
knowledge of the underlying Swing library. More
complex extension are also possible, if the integrated Java
API is used. In the current test application this has been
shown by integrating part of the new Java-Quicktime
library into UXO. This allows to display and control
Quicktime movies, getting the current timecode, jumping
to specific pictures of the movie etc, making it possible to
produce transcriptions of the displayed scenes.

2. As an DSSSL script, allowing to transform the
structure of the XML document (e.g. to convert the
content, to perform structured search/replace function
etc.):

0 (define (update node)

1 (send-sql-command (string-append

2 "UPDATE "

3 (get-resource-string "table")

4 " SET "

5 (get-resource-string "set") " =

6 '"(gi node)"'"

7 " WHERE "

8 (get-resource-string "update")

9 " =

10 '" (data node) "'")

11 "jdbc:odbc:lilidependenz"))

12 (element (update (current-node)))

Script 2: A more complex script which transfers the
content of a given XML-document into the relational
database.

Using scripts, the mapping of relational table based
data to tree structured XML data becomes relatively easy
and very flexible. As you can see in example script 2
sending an SQL command to the database engine is done
using the function (send-sql-command command
databasename). The command is a simple string
containg the SQL-call. In this example data from the
XML-structure is used in the SQL-command by calling
(gi node) and (data node), accessing the node
name and the node content. Once the SQL-transaction is
finished, the current node of the XML-structure will be
updated to display the new data.

The integrated JDBC interface to relational databases
is not restricted to using local databases (such as MS
Access on a PC). It is network-based and can connect to
most modern relational databases available today.

We hope that this feature will support linguist when
linguistic data gathered during field work has to be
transferred into the central database used in laboratory
work.

Scripts are loaded at runtime of the system, thus they
can be edited and reloaded without stopping the editor,
making it easier to debug them. Unfortuneatly, if errors
occur, the presented error messages are quite unclear.
This is mainly due to the fact, that errors most often will
lead to internal Java exception, which will be displayed to
the user. The Java stack trace does not give very much
information about the scheme function, which caused the
error.

Another way of accessing the functionality of a script
is by compiling it with KAWA scheme system. KAWA is
able to produce Java byte-code, which can then be directly
loaded by the Java virtual machine. Such scripts will run
at much higher speed. For application developers it will
be possible to design and implement scripts, configuring
the editor in the desired way and deliver a binary version
of their work.

4. Applications

UXO primarily has been designed for building
linguistic applications, mainly to support field linguists
while describing some language. Still the system is not
restricted to linguistic applications. In a number

cooperation projects with Bertelsmann and Boellhoff1, we
followed a similar approach as in UXO allowing to semi-
automatically generate SGML-annotated product
catalogues. At this time (1995-1997) no appropriate
integrated working environment for SGML existed, hence
we started developing UXO.

In the current version scripts for building up and
using a lexicon have been build in. The lexicon will be
stored in a relational database, allowing to work with
very large lexicons. Once a text has been entered into
UXO, calling the lookup-script will add XML-markup to
all words found in the lexicon. The user is able to define
which information encoded in the lexicon will be used for
markup (default is to markup the words category). If
unknown words occur in the text, these will be inserted
into the lexicon by calling an update-script. If the user
inserts appropriate markup, this information will also be
inserted into the lexicon. Both the lookup and the update-
script are able to cope with ambiguities.

Using Scheme as the underlying scripting language
easily allows to implement standard (computational)
linguistic procedures. In the current prototype of UXO a
simple dependency parser (DP) for a subset of German
has been integrated. The user enters a sentence, which
will be parsed by the DP. The dependency structure will
be transformed into XML markup and the content of the
editor will be changed appropriately:

0 <sentence>

1 <n IDREFS=““ Genus=“m“

2 ID=“1“>Peter</n>

3 <v IDREFS=“1 3“

4 Tempus=“present“

5 ID“2“>loves</v>

6 <n IDREFS=““ Genus=“f“

7 ID=“3“>Mary</n>

8 </sentence>

Figure 3: Parsing the sentence „Peter loves Mary“ results
in XML-Markup defining the structure of the sentence as
well as establishing the dependency relations between
parts of the input. The relations are encoded using the
ID/IDREFS mechanism of XML:

The DP first generates a list of all words entered into
the editor. For each word a lexicon lookup via JDBC-calls
will be performed. A single word w is parsed in three
steps: first look for all words, which are dependent on w
and establish the dependency relations, then look for all
words, which govern w and establish the relation and at
last store the current word w for further processing. Once
the relations have been computed, the result will be
transformed into XML-markup of the input text. The
relations are encoded using the XML ID/IDREFS

1 Boellhoff is a manufacturer for connection technology, mainly
for the car industry. With approximately 60.000 parts the
product range of Boellhoff is rather large. As a result the
catalogue has a complexity of a medium size lexicon.

mechanism. Each constituent of the input is assigned a
number stored as its ID, allowing to encode the
dependency relation by simply listing the IDs of the
dependent constituents. In the example (figure 3) the
verb ‘loves’ (IDREFS=“1 3“) governs the nouns ‘Peter’
(ID=“1“) and ‘Mary’ (ID=“3“).

5. Conclusion

The Universal XML Organizer UXO is a very well
suited basis for the development of tools for XML-
structured data entry and a comfortable tool for complex
conversion of and extended search in XML-annotated
data. Due to its implementation in Java the system is
portable to a number of operating systems without losing
functionality. As the system can be reconfigured and
extended to a wide degree, adaptation to specific user
needs is easily achieved.

References

Blake, G. E., M. P. Consens, P. Kilpeläinen P-A. Larson,
T. Snider, and F. W. Tompa. 1994. Text / Relational
Database Management Systems: Harmonizing SQL
and SGML. In Proceedings of ADB'94

Bothner, Per. 1998a. Kawa: Compiling Scheme to Java
In Proceeding of the Lisp Users Conference, Berkeley,
CA.

Bother, Per. 1998b. Kawa - Compiling Dynamic
Languages to the Java VM. In Proceedings of the
Usenix, New Orleans.

DeRose S. J. and D. G. Durand. 1994, Making
Hypermedia Work. A User's Guide to HyTime. Kluwer
Academic Publishers.

Christophides, V., S. Abiteboul, S. Cluet, and M. Scholl.
1994. From Structured Documents to Novel Query
Facilities. In Proceedings of ACMSIGMOD'94,
313-24. Minneapolis.

Klute, Rainer. 1998. JDBC ind der Praxix. Addison-
Wesley Longman. Bonn.

Le Maittre, J., Murisasco, E. and Rolbert, M.: From
Annotated Corpora to Databases: the SgmlQL
Language. In J. Nerbonne: Linguistic Databases, CSLI
Publications, 1998.

Milde, Jan-Torsten. 1999. Effizientes Document
Engineering sprachlicher Daten. In H. Lobin, Text im
digitalen Medium, Westdeutscher Verlag, 1999

Reinsch, Markus. 2000. Entwicklung eines XML-Tools in
Java, Universität Bielefeld, 2000

Reinsch, Markus, and Milde, Jan-Torsten. 2000. The
universal XML-Organizer UXO, In Proceedings of
PAP2000, Manchester, To Appear.

Unicode (1996). The Unicode Consortium: The Unicode
Standard, Version 2.0. Reading, Mass.: Addison-
Wesley Developers Press.

Volz M., K. Abere, and K. Böhm 1996. Applying a
flexible OODBMs-IRS-coupling to Structured
document handling. In Proceedings of the 12h
International Conference on data engineering (ICDE),
New Orleans, USA.

Yan, T. W, and J. Annevelink. 1994. Integrating a
Structured- Text Retrieval System with an
Object-Oriented Database System. In Proceedings of

the 20th Conference on Very Large Data Bases
(VLDB'94), 740-9. Santiago, Chile.

