
Automatic Transliteration and Back-Transliteration by Decision Tree Learning

Byung-Ju Kang, Key-Sun Choi

Department of Computer Science
Advanced Information Technology Research Center (AITrc)

Korea Terminology Center for Language and Knowledge Engineering
Korea Advanced Institute of Science and Technology

373-1 Kusong-dong, Yusong-gu, Taejon, 305-701, Korea
{bjkang, kschoi}@world.kaist.ac.kr

Abstract
Automatic transliteration and back-transliteration across languages with drastically different alphabets and phonemes inventories such
as English/Korean, English/Japanese, English/Arabic, English/Chinese, etc, have practical importance in machine translation, cross-
lingual information retrieval, and automatic bilingual dictionary compilation, etc. In this paper, a bi-directional and to some extent
language independent methodology for English/Korean transliteration and back-transliteration is described. Our method is composed
of character alignment and decision tree learning. We induce transliteration rules for each English alphabet and back-transliteration
rules for each Korean alphabet. For the training of decision trees we need a large labeled examples of transliteration and back-
transliteration. However this kind of resources are generally not available. Our character alignment algorithm is capable of highly
accurately aligning English word and Korean transliteration in a desired way.

1. Introduction
Recently there are increasing concern about automatic

transliteration and back-transliteration across languages,
especially with radical differences in their alphabets and
phoneme inventories such as English/Korean (Lee & Choi,
1998; Jeong et al., 1999), English/Japanese (Knight &
Graehl, 1997), English/Arabic (Stalls & Knight, 1998),
English/Chinese (Wan & Verspoor, 1998), etc.
Transliteration is phonetic translation that finds the
phonetic equivalent in target language given a source
language word. Back-transliteration is the backward
process that finds the origin word from the transliterated
word. For example, English word “internet” is generally
transliterated into ‘Å}� (intonet)’ in Korean and the
right back-transliteration of ‘Å}� (intonet)’ should be
‘internet’ (Figure 1).

Most of the related researches have been done under
the context of cross-lingual information retrieval (Lee &
Choi, 1998), machine translation (Knight & Graehl, 1997),
automatic bilingual dictionary compilation (Kang &
Maciejewski, 1996; Collier et al., 1997) and resolution of
the word mismatch problem caused by foreign words in
information retrieval (Jeong et al., 1999).

In contemporary Korean, the significant portion of the
vocabulary consists of loan words and most of them are
from English. They are generally transliterated in Korean.
Both in machine translation and cross-lingual information

retrieval, source language word should be translated into
target language word based on bilingual dictionary.
Unfortunately, many English technical terms or names are
not listed in the bilingual dictionary. Therefore, when
source language is English and target language is Korean,
automatic transliteration is required (Lee & Choi, 1998),
on the contrary, when source language is Korean and
target language is English, automatic back-transliteration
is required (Lee, 1999).

Recently, in Korean, the speed of import of English
words is accelerated. Most of them are technical terms.
We believe that this phenomenon is also true in most of
languages besides English. It is difficult to expect all the
new imported words be immediately listed in
contemporary Korean dictionary. However NLP (Natural
Language Processing) can not avoid processing of the new
words under the excuse of the non-existence in dictionary.
It is possible to automatically compile foreign word
dictionary by phonetic matching among English words
and transliterations in parallel or non-parallel bilingual
corpora (Kang & Maciejewski, 1996; Collier et al., 1997).

In Korean, transliteration of an English word may be
very various. For example, English word ‘digital’ may be
variously transliterated in Korean as ‘a
� (ticithel)’,
‘a
� (ticithal)’, and ‘a

 (ticithul)’, etc, even
though ‘a
� (ticithel)’ is preferred as a standard form.
This is because an English phoneme can only be
ambiguously mapped to more than one Korean phoneme
due to their radically different phonolgies. Moreover, lazy
writers often use English word in its original form without
transliteration. These mixed use of various transliterations
together with their origin English word cause severe word
mismatch problem in information retrieval. One solution
for this problem is to index only the canonical form of the
variations. As the canonical form, the origin English word
should be preferred. Automatic back-transliteration is
required to find the canonical form of the variants (Jeong
et al., 1999).

For the machine learning of transliteration and back-
transliteration rules, large phonetically aligned pairs of
English word and Korean transliteration are essential.

target languagesource language

back-transliteration

‘internet’

(English)

‘Å}�’

(Korean)

transliteration

Figure 1. Transliteration and Back-transliteration

However this kind of resources does not exist and manual
alignment would be highly tedious. In previous researches
small amount of aligned word pairs were manually
constructed (Jeong et al, 1999) or unsupervised learning
method, a variation of EM(Expectation Maximization)
algorithm, were tried (Lee & Choi, 1998). However
manual alignment is not proper for the large amount of
data and the performance of unsupervised learning was
not good enough.

In this paper, we first present an automatic character
alignment method between English word and Korean
transliteration. Our method is highly accurate so that more
than 99% accuracy was obtained. With this alignment
method the construction of large reliable labeled (aligned)
examples is just instant.

Once we have enough aligned data, in fact any
supervised learning method would be applicable to the
transliteration and back-transliteration domain. We chose
decision tree method to automatically induce
transliteration and back-transliteration rules for its
conceptual simplicity and empirically verified
effectiveness in text-to-speech domain (Dietterich et al,
1995).

Our methodology is fully bi-directional, i.e. the same
methodology is used for both transliteration and back-
transliteration. Moreover, our proposed methodology is
easily adaptable to other language pairs. Decision tree
learning algorithm is domain independent and our
alignment method is relatively easily adaptable to other
language pairs. The alignment method is logically divided
into language independent part and language dependent
part. Alignment algorithm itself is domain independent
but the heuristic rules used incorporate bilingual phonemic
knowledge. However the bilingual phonemic knowledge
is simple so that even non-expert may encode it without
much difficulty.

2. Character Alignment

2.1. English/Korean character alignment
English/Korean character alignment is, given a source

language word (English) and its phonetic equivalent in
target language (Korean), to find the most phonetically
probable correspondence between their characters. For
example, English word ‘board’ is generally transliterated
into ‘A) (potu)’1 in Korean and their one possible
alignment is as follows:

English b oa r d
| | | |

Korean � ¢ - �¬

Generally E/K character alignment has the following
properties:

(1) many-to-many correspondence
(2) null correspondence
(3) no crossing dependency

1 Korean characters are composed in syllable unit when they get
written. The two-syllable word ‘A)’ may be deformed as
‘�¢�¬’ in character unit.

In most cases English words and their Korean
transliterations do not have same length. This means that
the mapping type is generally many-to-many
correspondences. Moreover it may also have null
correspondence. They are mainly due to silent English
letters. They are also caused by Korean characters. In
Korean a consonant is not allowed come in stand-alone
and must be followed by a vowel. This causes dummy
Korean vowels that can not be mapped to any English
alphabets. In character alignment, unlike word alignment
and sentence alignment, crossing dependency does not
occur. In another words, when the correspondences are
visualized as links between English and Korean characters,
the links do not cross each other. No crossing dependency
property makes an effective alignment algorithm possible
by drastically reducing the search space.

Let’s call the mapping unit, ‘b’, ‘oa’, ‘r’, ‘d’, ‘�’, ‘¢’
‘�¬’ in the above alignment example, as PU
(Pronunciation Unit) (Lee & Choi, 1998). We may use
decision trees for the induction of the mapping rules
between English PUs and Korean PUs. Unfortunately,
however, too many PUs may be produced and
consequently too many decision trees need to be
constructed. Moreover null PUs in the source word side
makes the application of decision tree method difficult. To
remedy this problem we constrain the alignment
configuration. Specifically we allow only one-to-many
correspondence and prohibit null PUs in the source word
side.

Under these constraints the previous alignment
example may be modified as follows:

English b o a r d
| | | | |

Korean � ¢ - - �¬

On the contrary, when source word is Korean and target
word is English, i.e. back-transliteration, the alignment
should be as follows:

Korean � ¢ � ¬

| | | |
English b o a r d -

This constrained version of character alignment makes
decision tree learning more manageable and more efficient.
In the case of E/K transliteration only 26 decision trees for
each English alphabet need to be learned and in the case
of E/K back-transliteration only 462 decision trees for each
Korean alphabet need to be learned.

2.2. Alignment algorithm
For the automatic character alignment, we developed

an extended version of Covington’s alignment algorithm
(Covington, 1996). Covington’s algorithm views an
alignment as a way of stepping through two words while
performing match or skip operation on each step. Thus the
alignment

2 Refer to appendix for the more information about the 46
Korean alphabets.

source b o a r d -
target � ¢ - - � ¬

is produced by matching ‘b’ and ‘�’, ‘o’ and ‘¢’, then
skipping ‘a’ and ‘r’, matching ‘d’ and ‘�’, and lastly
skipping ‘¬’. Null symbol ‘-’ indicates skip at the
position.

Covington’s algorithm produces only one-to-one
correspondence. This implies that null mapping is
inevitable on both source and target word side. In order to
produce one-to-many correspondences and remove null on
the source word side we introduce bind operation. We
define two kinds of bind operation: forward bind and
backward bind. The following alignment example of
English word ‘switch’ and Korean transliteration ‘ñQ¥3

(suwuichi)’ pictorially represents the two bind operations.

source � ¬ > ª > � < ®

target s - w i t c h -

where ‘>’ and ‘<’ respectively represent forward bind and
backward bind at the position. ‘w’ is forward binded with
‘i’ and together matched with ‘ª’. Similarly, ‘t’ and ‘h’ is
forward and backward binded with ‘c’ and collectively
matched with ‘�’. By introducing bind operations we can
remove null on the source side. Therefore the recurrent
alignment example of ‘board’ and ‘A) (potu)’ may be
represented as follows:

source b o a r d <
target � ¢ - - � ¬

in the case of transliteration and

source � ¢ < < � ¬

target b o a r d -

in the case of back-transliteration.
We can systematically generate all the valid

alignments that are possible by match, skip, bind
operations and satisfy the alignment constraints. Aligning
may be interpreted as finding the best alignment in the
alignment search space that is composed of all the valid
alignments. The algorithm does not use dynamic
programming but does depth-first search while pruning
fruitless branches early (Covington, 1996). To evaluate
each alignment, every match, skip, bind is assigned a
penalty depending on the phonetic similarity between the
English letter and Korean character under consideration.
The alignment that has the least total penalty summed
over all the operations is determined as the best. For
example, the total penalty of the alignment of ‘board’ and
‘A) (potu)’ can be computed as follows:

English b o a r d <

Korean � ¢ - - � ¬

operation M M S S M b.B
penalty 0 + 10 + 40 + 60 + 0 + 200 = 310

3 ‘ñQ¥’ is deformed as ‘�¬ª�®’ where ‘�’ is omitted
since it is soundless when it is syllable-initial.

Human who has a little bit of bilingual phonemic
knowledge can almost correctly align any English word
and its Korean transliteration pair. This is because
relatively simple bilingual phonemic knowledge is
sufficient for the alignment task. We hope to simulate this
human process. We may exploit the following two
heuristics that are expected to be very effective in E/K
character alignment.

H1. Consonant tends to map with consonant and vowel
tends to map with vowel.

H2. There exist typical Korean transliterations for each
English alphabet.

We have succeeded in aligning with high accuracy
using the heuristic H1 and H2. The heuristic H1 seems to
always hold except ‘w’. The semi-vowel ‘w’ is sometimes
mapped to Korean consonant even though it is usually
mapped to vowels. For the heuristic H2, we can easily
make a list of typical Korean transliterations for each
English alphabet. Generally an English alphabet has more
than one Korean character that is phonetically similar.
Table 1 lists phonetically similar Korean transliterations
(or characters) for several English alphabets. This simple
bilingual phonemic knowledge can be coded without
much effort by even non-expert. If we match English
alphabet with the Korean character in the list with higher
priority, in most cases we get correct alignment. To handle
more complicated cases we made up of the evaluation
metrics in Table 2 by extending the heuristic H1.

The evaluation metrics in Table 2 approximately
realize the following principles: (1) phonetic similarity
matters most, (2) consonants matters more than vowel, (3)
vowel and consonant do not tend to map each other, (4)
phonetically dissimilar consonants do not tend to map
each other, rather skip is preferred, (5) phonetically
dissimilar vowels tend to map each other rather than
skipping, (6) bind is more generous for dissimilar
consonants’ matching and also for vowel/consonant
matching, (7) consonant/vowel bind preferred than
dissimilar consonant bind.

We ran our alignment algorithm on 500 pairs5 of
English word and Korean transliteration. The alignment
results were manually checked by human evaluators.

4 The consonant attached with ‘*’ means that it is a syllable-final
consonant. Refer to appendix for more explanation.
5 The 500 word pairs were randomly selected from the 7000
word pairs that are explained in section 4.1.

English
alphabet

Korean transliterations

a � � � � � ¦
b � �*4

d � �
o ¢ �
r � �*

Table 1. Typical Korean transliterations for several
English alphabets

Table 3 shows the percent correct when alignment
direction is from English to Korean (for transliteration)
and from Korean to English. (for back-transliteration). In
both cases extremely high performances, more than 99%
accuracy, were obtained.

alignment direction
percent
correct

English → Korean 99.4%
Korean → English 99.0%

Table 3. The performance of the character alignment
algorithm

3. Learning decision trees
Once aligned English word - Korean transliteration

pairs are prepared, it is very straightforward to generate
large training data for the decision tree induction. For the
automatic transliteration (from English to Korean) the
following five mapping examples may be obtained from
the constrained alignment of ‘board’ and ‘A) (potu)’ .

L3 L2 L1 (E) R1 R2 R3 E
< < < (b) o a r → �

< < b (o) a r d → ¢

< b o (a) r d > → -
b o a (r) r > > → -
o a r (d) > > > → �¬

Each example consists of 6 attribute values, left three
characters and right three characters and is labeled with
the corresponding Korean transliteration. These labeled
examples are classified by English alphabet and then used
as training data for the learning of 26 decision trees.

On the other hand, for the back-transliteration (from
Korean to English) the following four mapping examples
may be obtained.

L3 L2 L1 (K) R1 R2 R3 E

< < < (�) ¢ � ¬ → b
< < � (¢) � ¬ > → oar
< � ¢ (�) ¬ > > → d
� ¢ � (¬) > > > → -

These examples are classified by Korean alphabet and
then used as training data for the learning of 46 decision
trees.

We use ID3-like algorithm for the learning of the
decision trees. ID3 is a simple decision tree learning
algorithm developed by Quinlan (1986). ID3 constructs a
decision trees recursively starting at the root node. At each
node an attribute is selected and tested, then examples are
partitioned depending on the values of the attribute. If all
the examples of a node belong to the same class, the node
become a leaf and labeled with the class. If there is no
more attributes remained to test, then the node become a
leaf and labeled with the majority class of the examples of
the node.

Once the decision trees are independently learned, the
transliteration process is straightforward. Given an input
English word, each English letter is mapped to Korean
characters using the corresponding decision trees, then
concatenating all the Korean characters produces final
Korean transliteration. However, the simple concatenation
of the Korean characters may not result in a valid Korean
word. This is because there exist explicit rules for the
composition of a valid syllable from Korean characters.
Currently we simply add Korean vowel ‘¬’6 in default if
it is needed to compose a valid syllable. However more
elaborate method would be desirable. Back-transliteration
can be done in similar way.

4. Experiments

4.1. Training and testing data
7,000 foreign word and Korean transliteration pairs

were prepared as experiment data. The 7,000
transliteration examples were selected from the foreign
word dictionary of Nam (1977), which contains about
9,000 standard transliterations with their origin word, after
discarding acronyms, multi-words, and words containing
non-English alphabets, etc. However, the data still
contains various non-English origin words like French,
Russian, Spanish, and Italian, etc, which would degrade
the learning performance. Most of words in the data are
from English, however, so non-English origin words
would act as noise during the learning process.

1000 words, out of the 7,000 words, were randomly
chosen and reserved as testing data. The remained 6,000
words were equally divided into 3000 word training data
set and 3000 word extra data set. For all the following
experiments in this paper the 1000-word testing data and
3000-word training data were used in default. And the
3000-word extra data were used as validation data or extra
training data depending on the kind of experiment.

6 The Korean vowel ‘¬’ consumes the least energy to
pronounce. So it tends to be easily attached to a standalone
consonant than any other vowels.

operation condition penalty
similar consonant / consonant 0
similar vowel / vowel 10
dissimilar vowel / vowel 30
dissimilar consonant / consonant 240

match

vowel / consonant 250
vowel 40

skip
consonant 60
similar consonant / consonant 0
similar vowel / vowel 10
dissimilar vowel / vowel 30
dissimilar consonant / consonant 190

bind

vowel / consonant 200

Table 2. Alignment evaluation metrics

4.2. Evaluation measures
Transliteration and back-transliteration accuracy is

measured by the percentage of the number of correctly
transliterated or back-transliterated words divided by the
total number of words tested. The correct transliteration
here means the standard transliteration as listed in the
dictionary and the correct back-transliteration means the
origin English word. This measure is called word
accuracy.

However word accuracy has some problems as a
transliteration accuracy measure. There are generally
several acceptable transliterations, though they are not all
standard, for an English word. The decision about the
acceptability is more or less subjective to human evaluator.
In order to alleviate the problem, we introduce character
accuracy (Lee & Choi, 1998), which is equivalent to the
minimum edit distance measure (Wagner & Fischer,
1974) for string comparison, that computes the least
number of character insertions, deletions, substitutions
needed to transform a generated word to its correct form.

We use another measure, called letter accuracy, which
is the number of correctly transliterated or back-
transliterated letters divided by the total number of letters
in the test set. Using the letter accuracy we can evaluate
how well an individual decision tree has been learned for
each English alphabet or Korean alphabet.

The word, letter, and character accuracy are defined as
follows:

setin test wordsofnumber total

 wordsdnsliterate(back-)tracorrectly of no.
 accuracy word =

setin test letters ofnumber total

letters dnsliterate(back-)tracorrectly of no.
 accuracy letter =

L

sdiL)(
 accuracy character

++−=

where L is the length of the original string, and i, d,
and s are the number of insertion, deletion and substitution
respectively. If the dividend is negative (when L < (i + d
+ s)), we consider it zero. The term character accuracy is
actually used as the meaning of average character
accuracy of all the tested words.

4.3. Attribute selection

ID3 algorithm uses information gain (Quinlan, 1986)
as attribute selection measure. Information gain measure
is knowledge-poor approach based solely on the statistics
on the training data. In our case, the training data may also
contain noises and many irregularities. Consequently, it is
inherently impossible to determine the perfect ordering of
attribute selection only by seeing the training data.

In this vein, we tested alternative orderings of attribute
testing based on the domain knowledge about E/K
transliteration. The domain knowledge we exploited is the
following two hypothesis. The first is that nearer an
attribute alphabet is to the target alphabet, more influence
it gives to the transliteration of the target alphabet. The
second is that each alphabet should be differentiated in
considering their transliteration context.

The first hypothesis is quite obvious. For the second
hypothesis, let’s consider the case of ‘h’, alphabet ‘h’ is
very often combined with other consonants so as to form a
single phoneme like ‘ch’, ‘th’, and ‘sh’, etc. Therefore the
immediately preceding alphabet is more likely to dictate
the transliteration of ‘h’. Based on these two hypothesis or
observations, we devised two alternative orderings of
attribute testing for each alphabet: right-first proximity
and left-first proximity selection strategy selects attributes
in the order of <R1, L1, R2, L2, R3, L3> and <L1, R1, L2,
R2, L3, R3> respectively.

Our attribute selection strategy is to select nearer
attribute first and to determine the preferred direction
(right-first or left-first) as that of high accuracy in
validation data that are set aside from training data. Table
4 shows the performance comparison between our
proximity selection method and information gain measure
with the default 3000-word training data and 1000-word
testing data. As validation data for proximity method the
extra data set of 3000 words was used. The proximity
method performed better in both transliteration and back-
transliteration. The effectiveness was much more obvious
in transliteration but the performance difference in back-
transliteration looks trivial. In all the following
experiments, the proximity attribute ordering is used in
default unless other attribute selection measure is
explicitly specified.

4.4. Pruning trees
ID3 algorithm grows the tree until all the training

examples are perfectly classified. If the training data
contains noise, the pure ID3 algorithm may lead to some
difficulty. This is because decision tree tries to learn not
only the target concept but also the peculiar pattern of the
noise. So, even though the decision tree may almost
perfectly perform on the training data, it will perform very
poorly on unseen data. This phenomenon is called
overfitting (Mitchell, 1997).

transliteration back-transliterationattribute
selection
method

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

info. gain 44.9 80.5 84.9 7363 34.2 78.2 81.5 7767
proximity 48.7 81.8 86.3 6973 34.7 78.6 82.1 7738

Table 4. Performance comparison between two attribute selection methods: proximity and information gain.

There are two fundamentally different approaches to
avoiding overfitting the training data in decision tree
learning. First approach, called pre-pruning, is to stop
growing decision trees before it reaches to the perfect
classification of all the examples. Second approach, called
post-pruning, is to derive complete decision tree first, then
to post-prune the tree.

The most critical part of pre-pruning is when to stop
growing. Many stopping criterions have been proposed so
far (Mingers, 1989). But we tested only one of them in our
experiments. The information gain measure was adopted
since we did not use it as a selection measure7. If the
information gain acquired by growing the current node is
less than a specified threshold, stops growing and make
the current node as a leaf node. The majority class of the
examples of the node is assigned as the class of the leaf
node.

Generally, post-pruning is known to be more effective
method to avoiding overfitting problems than pre-pruning
(Mitchell, 1997). So we tested reduced error pruning
method (Quinlan, 1987), which is one of the most
representative post-pruning methods and known to give
persistent performance (Mingers, 1989), to find out
whether it can improve the transliteration accuracy.

In the past work on English text-to-speech mapping,
pruning trees turned out to be not much helpful in
improving the mapping accuracy (Dietterich et al, 1995).
We also obtained similar results. All the tree pruning
methods failed to increase both the transliteration and
back-transliteration accuracy (Table 5). This result may
mean that ID3 is not overfitting the data. In another words,
the 3000-word data does not contain much noise. This

7 If information gain measure is used as an attribute selection
measure, generally chi-square test is used as the stopping
criterion. Using the same measure for both attribute selection
and pre-pruning may cause problem (Quinlan, 1986).

result is not so surprising since our character alignment is
almost perfect and the only source of the noise is the
relatively small amount of non-English origin words.

Another interesting observation is that in back-
transliteration, both pre-pruning and post-pruning reduced
the tree sizes by 28% and 46% respectively without
decreasing back-transliteration accuracy while no
significant change in tree size happened in transliteration.

4.5. Training set size
Until now, we have only showed performance values

with the 3000-word training set. It might be that more
training data raise the transliteration accuracy. So we
generated decision trees, increasing data by 1000 words,
with 6 different training data of the size of 1000 words to
6000 words (Table 6). We obtained significant
performance improvement especially in word accuracy.
Transliteration word accuracy increased from 38.9 (1000
words) to 51.3 (6000 words) by about 44% and back-
transliteration word accuracy increased from 27.3 (1000
words) to 37.2 (6000 words) by about 36%. However, in
both transliteration and back-transliteration, the increase
rates were rapidly slowed after 3000 words.

4.6. Discussions
We analyzed how well individual decision trees are

learned. In the case of transliteration, it was found that all
the English vowels ‘a’, ‘e’, ‘i’, ‘o’, ‘u’ and consonant ‘w’,
‘x’ had especially low letter accuracy. The low accuracy
of vowel is because it is realized to many different
phonemes. In the case of back-transliteration, generally
Korean vowels had relatively low accuracy in the same
reason.

The low letter accuracy might mean that their
transliteration or back-transliteration is very irregular or
their target concepts may be very complex. In the case that

transliteration back-transliteration
pruning
method

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

before prun 48.7 81.8 86.3 6973 34.7 78.6 82.1 7738
pre-prun* 48.8 82.0 86.4 6723 34.7 79.1 82.4 5513

post-prun** 48.5 81.7 86.3 6937 32.3 79.3 82.3 4123
* using information gain measure, ** using reduced error pruning

Table 5. Effectiveness of tree pruning

transliteration back-transliteration
training
data size

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

word
accuracy

character
accuracy

letter
accuracy

Total no.
of leaves

1000 38.9 76.8 82.4 2950 27.3 75.2 79.2 3104
2000 45.0 80.5 85.1 5017 31.7 77.6 81.2 5565
3000 48.7 81.8 86.3 6973 34.7 78.6 82.1 7738
4000 49.7 82.8 86.9 9922 36.4 79.2 82.6 10646
5000 50.9 83.1 87.3 12355 35.9 79.5 83.0 13167
6000 51.3 83.4 87.5 14547 37.2 80.0 83.3 15423

Table 6. Effectiveness of enlarging the training data size.

transliteration and back-transliteration is inherently highly
irregular, there is no good way to improve the accuracy.
However, if the low accuracy is due to the high
complexity of the target concept, more training data or
wider context window might improve the accuracy.

5. Conclusion
We have presented a very effective bi-directional

automatic English/Korean transliteration and back-
transliteration methodology. Our method consists of
character alignment and decision tree learning. We wanted
to induce the transliteration rules for each English
alphabet and the back-transliteration rules for each Korean
alphabet. However what is missing is large labeled
examples for the training of decision trees. So, we
developed a highly accurate character alignment algorithm,
which is able to align two words in a desirable constrained
way across languages. Our method is somewhat language
independent. The only language dependent part is the
alignment evaluation metrics that may also be easily
constructed without much effort.

Appendix: Korean consonants and vowels
Korean alphabets consist of 19 consonants and 21

vowels. Korean characters are composed in syllable unit
when they get written. The possible syllable
configurations are CV, CVC and CVCC. The consonant
preceding vowel is called syllable-initial and the
consonants following vowel are called syllable-finals. For
phonetic matching, it is beneficial to differentiate Korean
consonants as syllable-initials and syllable-finals since
they are pronounced differently depending on their
position within a syllable.

Table 7 shows the list of Korean consonants and
vowels. In Korean transliteration of foreign words only 7
consonants are allowed in syllable-final position. The
syllable-initial ‘�’ is dummy for the purpose of just
satisfying the legitimate Korean syllable configurations.
So we decided to omit it in our deformed form of Korean
words.

Korean alphabets

syllable-initial
(19)

|, }, �, �, �, �,
�, �, �, �, �, (�),
�, �, �, �, �, �,
�

consonant

syllable-final
(7)

|*, �*, �*, �*, �*,
�*, �*

vowel (21)

�, �, �, �, �, �,
 , ¡, ¢, £, ¤, ¥,
¦, §, ª, ©, «, ­,
®, ¬

Table 7. Korean consonant and vowels

Acknowledgements
This work was supported by the Korea Science and

Engineering Foundation (KOSEF) through the Advanced
Information Technology Research Center (AITrc).

References
Collier, N., A. Kumano and H. Hirakawa, 1997.

Acquisition of English-Japanese proper nouns from
noisy-parallel newswire articles using Katakana
matching. Natural Language Processing Pacific Rim
Symposium ’97.

Covington, M. A., 1996. An algorithm to align words for
historical comparison. Computational Linguistics, 22.

Dietterich, T. G., H. Hild and G. Bakri, 1995. A
Comparison of ID3 and Backpropagation for English
Text-to-Speech Mapping. Machine Learning, 18.

Jeong, K. S., S. H. Myaeng, J. S. Lee, and K. S. Choi,
1999. Automatic identification and back-transliteration
of foreign words for information retrieval. Information
Processing and Management, 35(4):523-540.

Kang, Y. and A. A. Maciejewski, 1996. An Algorithm for
Generating a Dictionary of Japanese Scientific Terms.
Literary and Linguistic Computing, 11(2).

Knight, K. and J. Graehl, 1997. Machine Transliteration.
In Proceedings. of the 35th Annual Meetings of the
Association for Computational Linguistics (ACL),
Madrid, Spain.

Lee, J. S., 1999. An English-Korean Transliteration and
Retransliteration Model for Cross-lingual Information
Retrieval. Ph.D. dissertation, Dept. of Computer
Science, Korea Advanced Institute of Science and
Technology.

Lee, J. S. and K. S. Choi, 1998. English to Korean
Statistical transliteration for information retrieval.
Computer Processing of Oriental Languages, 12(1):17-
37.

Mingers, J., 1989. An empirical comparison of selection
measures for decision tree induction. Machine Learning,
3:319-342.

Mingers, J., 1989. An empirical comparison of pruning
methods for decision tree induction. Machine Learning,
4:227-243.

Mitchell, T. M., 1997. Machine Learning. The McGraw-
Hill Companies, Inc.

Nam, Y. S., 1997. The latest foreign word dictionary.
Sung-An-Dang Press.

Quinlan, J. R., 1987. Rule induction with statistical data –
a comparison with multiple regression. Journal of the
Operational Research Society, 38:347-352.

Quinlan, J. R., 1986. Induction of decision trees. Machine
Learning, 1:81-106.

Stalls, B. and K. Knight, 1998. Translating Names and
Technical Terms in Arabic Text. In Proceedings of the
COLING/ACL Workshop on Computational
Approaches to Semitic Languages.

Wagner, R. A. and M. J. Fischer, 1974. The string-to-
string correction problem. Journal of ACM 21(1):168-
178.

Wan, S. and C. M. Verspoor, 1998. Automatic English-
Chinese name transliteration for development of
multilingual resources. In Proceedings of COLING-
ACL’98, the joint meeting of 17th International
Conference on Computational Linguistics and the 36th

Annual Meeting of the Association for Computational
Linguistics, Montreal, Canada.

