
Automatic assignment of grammatical relations

Leonardo Lesmo*§ and Vincenzo Lombardo**§

*Dipartimento di Informatica Università di Torino

c.so Svizzera, 185, 10149 Torino, Italy
*DISTA – Università del Piemonte Orientale “A. Avogadro”

c.so Borsalino 54, 15100 Alessandria, Italy
§Centro di Scienza Cognitiva – Università di Torino

via Lagrange 3, 10123 Torino, Italy
{lesmo/vincenzo}@di.unito.it

Abstract
This paper presents a method for the assignment of grammatical relation labels in a sentence structure. The method has been
implemented in the software tool AGRA (Automatic Grammatical Relation Assigner), which is part of a project for the development
of a treebank of Italian sentences, and a knowledge base of Italian subcategorization frames. The annotation schema implements a
notion of underspecification, that arranges grammatical relations from generic to specific one onto a hierarchy; the software tool works
with hand-coded rules, which apply heuristic knowledge (on syntactic and semantic cues) to distinguish between complements and
modifiers.

1. Introduction
Recent work in corpus-based linguistic analysis has

pointed out the necessity of including predicate-
argument structures in treebank annotation schemata
(Marcus et al. 1994) (Skut et al. 1997). This permits the
collection of large data bases of subcategorization
frames and their relative statistics, that are of valuable
help for the accuracy of parsing models (Collins 1997),
and in the implementation of IE systems (Vilain 1999).

Existing annotation schemata roughly rely on two
basic syntactic paradigms: phrase structure grammars
and dependency grammars. The project described in
this paper adopts a dependency-based annotation
schema, which immediately recalls the notion of
predicate-argument structure. Dependency formats
seem to be specially adequate for non-configurational
languages, for example free-word order languages (cf.
Skut et al. 1997). Italian can be classified as a partially
configurational language, where SVO order is only the
preferred arrangement when a sentence is interpreted in
isolation; all the other 5 permutations can often occur in
naturally occurring texts1.

The major advantage of including predicate-
argument relations into the annotation schema is the
possibility of having an accurate description of the roles
played by the syntactic units in the sentence structure.
However, this descriptive richness can produce a large
amount of ambiguity. The selection of the correct set of
grammatical relations occurring in a sentence can
become a relevant workload for both an automatic
parser and a human annotator. Therefore, most
researchers have devised software modules specialized
in the assignment of grammatical relations (GRs).
These modules usually rely on stochastic methods

1 Note that we do not know how often, since this is one of the
goals for constructing a treebank including predicate-
argument structures.

(Brants et al. 1997) and/or machine learning techniques
(Buchholz et al. 1999) (Ferro et al. 1999). A common
characteristics of all the approaches is to keep low the
number of GR labels (around a dozen): this satisfies
some trade-off between the accuracy of the syntactic
description and the tractability of the assignment task.

The solution proposed in this paper is to realize this
trade-off through a flexible annotation schema, where
syntactic categories and grammatical relations are
arranged on a hierarchy from generic to specific ones,
implementing a notion of underspecification. When
specialization is possible, the parser and/or the
annotator descend the hierarchy to assign specific GR
labels; otherwise, they stop at some higher point in the
hierarchy, where relation labels cover a larger number
of cases. The software module for GR assignment
(called AGRA, Automatic Grammatical Relations
Assigner) implements a number of heuristics that take
into account the hierarchical organization. Heuristics
are expressed as condition-action rules, which realize
the mapping between GR labels and the syntactic
structures of arguments. The rules are hand-coded, and
incrementally updated through cycles of rule
application and manual error analysis on a set of
sentences used for training. As far as we know, this is
the first attempt of building such a module for Italian, a
partially configurational language where GR
assignment depends on a number of factors, like word
order, case suffixes and semantics.

The paper is organized as follows: in the next
section we outline the annotation schema, with some
examples; then we describe AGRA, with the hand-
coded rules and the search engine for rule application;
finally we illustrate the cycles of rule application and
error analysis, with some numerical results and the
comparison with other approaches.

Figure 1. Dependency tree of the sentence “E’ italiano, come progetto e realizzazione, il primo porto turistico
dell’Albania” (It is Italian, as for project and realization, the first tourist port in Albania). This figure, which is in the

interface format of the annotation tool, is realized with the DaVinci program.

Figure 2. A partial view of the hierarchy of grammatical relations: only adjectival and prepositional modifiers.

2. An annotation schema for an Italian
treebank

A dependency-based annotation schema permits a
perspicuous representation of Italian sentences, which
feature a non-configurationality at the verbal level (this
means that the dependents of a verb are loosely
constrained in the linear order). Subject-Verb-
Complement (a generalization of SVO) is the most likely
order, but the other five permutations may occur as well.
Consider the following examples :

[Le autorità di Tirana]SUBJ [hanno scelto]VERB [il

progetto....]COMP
“The authorities of Tirana have chosen the project ... ”
[E']VERB [italiano]COMP, [come progetto e

realizzazione]MOD , [il primo porto turistico
dell'Albania]SUBJ

“It is Italian, as for design and realization, the first
tourist port of Albania”

Anche [sull'Albania]COMP [soffia]VERB [il vento della
protesta]SUBJ.

“The wind of protest blows over Albania too”

In fig. 1 there is a dependency tree from the treebank
(for the second sentence).

The characteristics of non-configurationality make
Italian a language for which the assignment of
grammatical relations is particularly relevant.
Grammatical relations can exhibit various degrees of
specificity with respect to a number of properties of the
relation arguments: syntactic category, semantic type,
several morpho-syntactic features. However, GR
assignment becomes a very difficult task, as the variety
and the specificity of GR labels increases. In order to
reach a valuable trade-off between richness of description
and tractability of assignment (being performed by a
human annotator or an automatic assigner) the GR system
proposed in this paper offers a high degree of flexibility.
Flexibility is related to the fact that dependency relations
are organized hierarchically (from generic to specific ones
(Fig. 2)). In the dependency literature, a similar system is
proposed by (Hudson, 1990), who extends the hierarchical
organization to all the grammar elements. For example,
the relation between a noun (head) and an adjective
(dependent) is an adjectival modification (adjcmod) that
can be further specified on the basis of the adjective
features (qualificative, possessive, indefinite, …). When

dependent

modifier complement

adjcmod prepmod

qualif poss indef deit ord topic loc part-of

GR assignment becomes a hard ambiguity problem, the
assigner can generalize to some grammatical relation
selected from the upper levels of the hierarchy.

In the adjectival part of the hierarchy, shown in figure
2, the feature information in the POS tag can help in
selecting the correct grammatical relation (it depends on
the type of adjective). See, for example, the POS tags of
the adjectives “primo” (first) and “turistico” (tourist) in
figure 1. But this is not always the case. In fact, the
situation is much more intricate for prepositional
modifiers. Again, in figure 1, it is hard to decide the
specific grammatical relation of the prepositional modifier
“come progetto e realizzazione” (as for project and
realization): in this case, the annotator can select a more
general (see figure 2) prepositional modifier (prepmod).

Penn Treebank researchers adopt a similar solution in
the phrase-structure format when an annotator is sure that
a sequence of words is a certain major constituent but
cannot decide its syntactic category. The solution is to
introduce a generic constituent label X (Marcus et al.
1993). This approach corresponds to the application of a
two-level underspecification mechanism: the annotator
has only one possible recover for annotation uncertainty.
In our approach, the annotator can use multiple degrees of
abstraction.

Now we turn to the automatic GR assigner (AGRA).

3. The software tool for the assignment of
grammatical relations (AGRA)

The assigner works on a data structure representing an
unlabelled dependency tree. In other words, the input
specifies, for each node, its syntactic dependents. So, the
task of the assigner is to perform a match between the set
of actual dependents and the possible dependents2. A
knowledge base of rules for the assignment of GR label
(described below) determines the number and the relations
of the possible dependents.

The match is performed in different ways, according to
the syntactic category of the governor. For all categories,
except verbs, the match is performed on single links. So,
in case the governor is a noun, AGRA inspects each
dependent, and applies the assignment rules to the pair
governor-dependent in order to find out the correct label.
It is clear that this approach overgeneralizes: nothing
prevents from having multiple links with the same label,
without any contextual check of the mutual compatibility.
However, since the assigner is run on real text, this
situation can hardly arise3.

With respect to verbal labels, the assignment is based
on Verbal Subcategorization Patterns (VSPs). These can

2 The unlabelled trees are the result of two tools developed
previously: a POS tagger and an interactive parser. Both of them
work on unrestricted texts. The tagger works left-to-right in a
single step and is based on condition-action rules (Boella &
Lesmo 1998). The interactive parser takes in input the POS-
tagged sentence and produces a dependency parse tree, by
proposing graphically tentative parse trees to the human
annotator while proceeding incrementally from left to right
(Lombardo et al. 1999).
3 But it can happen that the presence of a link could help to
disambiguate another link, which, in the current implementation,
cannot be accomplished

be seen as classes of verbs: for each class, the VSP lists
the set of obligatory grammatical dependents
(complements). Here, the matching process is more
complex. In fact, it has to be checked that all complements
appearing in the VSP are present without repetitions in the
input pattern. This task interacts with the presence of
adjuncts: both an adjunct and a required complement have
the same surface realization. Consider, for instance:
- Questa domenica l'ho passata proprio bene
 (This sunday it [I] have spent really well:
 I have spent this sunday really well)
- Questa domenica l'ho vista proprio bene
 (This sunday her [I] have seen really well:
 This sunday, I saw her really well)
In this case, This sunday plays the role of direct object of
the verb to spend in the first sentence (with l’ as a
reinforcement clitic), while it plays the role of a temporal
adjunct (with l’ acting as true direct object) in the second
sentence.

Moreover, surface realizations could be altered in the
input as a consequence of several phenomena: passives,
the pro-drop facility of Italian language, movements (like
raising or equi). So, the matching process is augmented
with a set of transformations, which enable the assigner to
obtain a set of derived VSPs from the basic VSPs
(subcategorization classes).

One of the main task of this project is to devise a set of
wide-coverage VSPs and transformations, so that the task
of the lexicographer is reduced to find the right class(es),
or VSPs, of a given verb (see section 4). In the next
subsections we describe the assignment rules, split in non-
verbal plus adjunct rules (operating on individual links
and do not take VSPs into account) and verbal rules
(matching the set of dependents of a node with some VSP
in the knowledge base).

3.1 Non-verbal rules and adjuncts

These rules are implemented as condition-action rules,
with the pair <head-category, dependent-category>
acting as an access key. So, for instance, we have:
 <noun, adj>: noun-adjr1, noun-adjr2, ..., noun-adjrn
Each rule (noun-adjri, in the example) has the form:
 if condition then label
A summary of the specific labels is in section 4. The
condition part may take into account many pieces of
information, some of which are discussed below:

a. The syntactic subtype (subcategory) of the head or

the dependent: as said in the previous paragraph, if
the adjective has subcategory poss (possessive), then
the label will be adjcmod-poss.

b. The actual words: e.g. in case the connection is
<noun, prep>, the governor word is opinione
(“opinion”), and the dependent preposition is su
(“on”), then the link is labeled as prepmod-topic

c. The semantic type of the involved elements: in case
of <noun, prep>, the preposition is di (“by”), and the
governor noun has the semantic category £auth-work4

4 Throughout the paper, semantic types are strings in italics
prefixed by the symbol £.

(e.g. sinfonia, romanzo: “symphony”, “novel”), then
the assigned label will be prepmod-author. Notice
that it is not part of the present project to develop a
taxonomy of semantic classes. However, the use of
semantic classes stresses the fact the no proper
labeling can be obtained without such knowledge.

d. Complex downward paths. This enables us to treat
some flexible types of locutions. In the example di
corsa (“of run” – “quickly”), we can have a
specification where a verb (remember that these rules
are used also for verbal adjuncts) governs di (“of”:
preposition), which, in turn, governs the word corsa
(“run”). The locution reading is unaffected by the
presence of a modifier (e.g., an adjective, di gran
corsa – “of great run” – “very quickly”).

e. Deverbalized nouns as governors. In these cases (the
fall of, the recognition of), a subject or object label
(called, distinctively, n-subject and n-object) can be
assigned on the basis of the transitivity of the original
verb.

Three rules are reported below. The first one is a rather
standard rule. It specifies that if an adjectival dependent of
a noun is of ordinal type, then the label must be adjcmod-
ordin (it applies to “for the fourth time” – the two words
underlined are the arguments of the relation). The second
rule involves a semtype and a path of length 2: if the
preposition governed by a noun is di (“of”), and the word
governed by di is of semantic type £time, then the noun-
prep label must be prepmod-time (this applies to
l’intervista di sabato – “the saturday interview”). The
third rule refers to a multi-word locution, a causa di
(“because of”). If these three words form a chain of nodes
in the dependency tree (a path of length 3), then the
topmost link (linking the preposition a) must be labeled as
adjunct-reason-cause (the other links are labeled as
locution-cont, i.e. continuation of a locution, via other
rules).

 (noun-adj7 ((down (type ordin))) adjcmod-ordin)

 (noun-prep-di20

 ((down (word di)
 (down (semtype £time)))) prepmod-time)

 (verb-prep-a3

 ((down (word a)
 (down (word causa)
 (down (word di)))))
 adjunct-reason-cause)

Box 1 - Examples of non-verbal rules

3.2 Verbal rules and transformations

A basic verbal subcat pattern (VSP) has the following
form (three components):

(subcat-pattern-name
 surface-realization
 labels)
The subcat-pattern-name is any string: trans, intrans,

trans-dest are examples of names.

Surface-realization and labels are two lists of the same
length, where there is a correspondence between items in
the same position. Items of the list labels are GR labels;
items in the list surface-realization constrain the syntactic
structure of the dependent fulfilling the grammatical
relation which occupies the same position in the list
labels. Surface-realization is described as follows:

 (surf-descr1 surf-descr2 ... surf-descrm)
In turn, each surf-descri has either the form
 <category>
or the form
 (<category> restrictions)
where the restrictions can be used to enforce any of the

constraints described above for non-verbal rules (e.g.
actual words or semtypes). An example of a VSP is
reported in Box 2.

 (trans-dest
(((noun (agree))

 (art (agree))
 (adj (semtype £geogr) (number pl) (agree))
 (pron (case nom) (agree)))
 (noun
 art
 (pron (not (type refl-impers)) (case acc))
 (adj (semtype £geogr) (number pl)))
 ((prep (word a) (down (semtype £city)))

 (prep (word in) (down (semtype £place)
 (not (semtype £city)))))

 (subject object to-loc))

Box 2 - Examples of a VSP

It specifies that the class trans-dest applies to verbs
requiring three dependents, which will be labelled as
subject, object, and to-loc (see the labels component in the
last line). Moreover, the subject can be a noun, an article
(remember that determiners govern nouns), an adjective
(geographical, as Italians) or a pronoun; all of them, in
order to act as subject must agree with the governor.
Moreover, in case the subject is a pronoun, it must appear
in the nominative (nom) case. The object is similar
(without agreement). The destination must be realized as
the preposition a (to) governing a word of £city semtype
or as the preposition in (in) governing any place other than
a £city. The pattern applies to verbs as portare (to bring),
inviare (to send), etc.

Transformations are rules converting a VSP into another
VSP. The resulting VSP is called derived VSP. The input
VSP can be either a basic (not transformed) or a derived
VSP. Some transformations can be applied to all patterns
(e.g. pro-drop), while others apply only to a given subset
of them (e.g. passivization applies only to the various
transitive VSP). The possibility of applying a
transformation to a derived VSP enables the system to
obtain patterns such as, for example, passive infinitivized,
which applies to di essere visto da lui (to be seen by him),
where the subject is absent (infinitivization) and an agent
complement can be present (passivization). After the
application of the transformations, it is assumed that it is
available a complete specification of all sets of dependents
(complements) which can appear below a given verb. For
instance, if the original definition of the verb amare (to

love) includes only the trans VSP, after the application of
transformations, it includes trans, trans+ passivization,
trans+pro-drop, trans+infinitivization, trans+
infinitivization+passivization, etc. (a total of 16 patterns
derived from trans). Now, when an occurrence of the verb
amare is found in a sentence, the matching process is
applied to all derived patterns. Again, adjuncts may cause
problems, but the match is performed on the derived
patterns exactly as on the basic patterns. Of course, all
patterns include some applicability conditions (depending
by the applied transformations), so that for instance,
trans+infinitivization only applies to verbs in the infinite
mood (conversely, the basic trans does not match a verb
in the infinite mood).

The matching process is based on the VSP of the verb.
In Box 3 below, we show the basic matching procedure.

procedure VSPMatch (Verb, InputDep)
begin
 /* Extract from dictionary all basic VSP’s of ‘Verb’ */
 VC := VerbClasses (Verb);
 /* Extract from DB the definitions of all VSP’s (basic and
 derived) associated with VC. This also checks the applic-
 ability conditions (e.g. infinite form of ‘Verb’ for derived
 VSP’s obtained via infinitivization) */
 VSP := GetVSPComp (VC);
 Found := false;
 lev := 0;
/* External loop for all levels (number of applied transform-
 ations). MaxLevel currently set to 5. Do not inspect level
 i+1 if solution found at level i */
 while not Found and lev <= MaxLevel do
 begin
 NextVSP := first (VSP, lev);
 BestLabels := empty;
/* Internal loop for all VSP’s at same level. The loop is not
 exited when a solution is found: all VSP’s are tried in order
 to find out the one with less adjuncts */
 while NextVSP is not null do
 begin
 CaseLabels := SingleMatch (NextVSP, InputDep);
 if CaseLabels <> empty then
 Found := true;
 if Adjuncts (CaseLabels) < Adjuncts (BestLabels)
 then BestLabels := CaseLabels;
 nextVSP := next (VSP, lev)
 end;
 lev := lev + 1;
end;

Box 3 - The procedure which, given a Verb and its
dependents, finds a match with the contents of the KB.

First, all the basic subcategorization patterns (VSP names)
of the verb are retrieved, and then the components of the
VSP (both basic and derived) are extracted. The VSP’s are
sorted according to how basic they are: basic VSP’s get a
level of 0, VSP’s obtained via a single transformation the
level 1, VSP’s obtained via 2 transformations the level 2,
and so on. The VSP’s with a lower level are tried first: this
corresponds to adopting a preference criterion where more
basic VSP’s are preferred. In case a VSP of level k
matches the input case frame, then all other VSP’s at the
same level are tried, in order to find the one that matches
with a minimum number of adjuncts; this is a weaker
preference: at the same level (i.e. the same number of

transformations applied) complements are preferred over
adjuncts. In case no match is found, all links concerning
dependents of the verb are labelled as Unknown.
In Box 4, we report the function for matching a single
VSP against the actual dependents; this is carried out by
first looking for any match between all surface
realizations of the cases in the VSP and one of the actual
dependents. The function is implemented as a depth-first
search, where each match between a complement and an
actual dependent is a choice point. This implies that:
• All complements are obligatory
• No order is implicit in the VSP (but some order

constraints can be expressed explicitly, if any)
In case all the required complements are found, the
remaining dependents are interpreted by using the rules
for adjuncts. For each of them, at least one interpretation
as an adjunct must be found, otherwise the whole match
fails.

/* InputDep is a Marked list of actual dependents; the marked
 dependents are the ones which have already been matched
 with a complement at some higher level of recursion */
function SingleMatch (Verb, VSP, InputDep)
begin
 if VSP = empty
/* if all complements have been found, then try to match the
 remaining actual dependents with adjuncts */
 then SingleMatch:= CompleteWithAdjuncts(Verb, InputDep)
 else
 begin
 Found := false;
 NextCompl := first (VSP);
 NextInpDep := first-unmarked (InputDep);
/* take the next element of the VSP (the first one, at this level
 of recursion); initialize the loop on actual dependents */
 while not Found and not null NextInpDep do
 begin
/* if the actual dependent satisfies the surface description of
 the first element of the VSP, then ElemMatch succeeds */
 firstMatch := ElemMatch (NextCompl, NextInpDep)
 if firstMatch <> fail then
 begin
/* and the recursion proceeds on the remaining complements
 (after having marked the Input Dependent to signal that it
 has already been used in the match) */
 result := SingleMatch (rest (VSP),
 Mark (InputDep, NextInpDep))
 if result <> fail then
/* if the match succeeds on the remaining portion of the VSP,
 then the task is accomplished */

begin
 Found := true;
 SingleMatch := append (firstMatch, result)
end

/* the first element matches, but the remaining ones do not; try
 another possibility with the next Input Dep */
 else NextInpDep := Next (InputDep)
 end /* firstMatch <> fail */
/* the first element does not match: try another possibility
 with the next Input Dep */
 else NextInpDep := Next (InputDep)
 end /* while */
 end;

Box 4 - The function for matching a single VSP against a
set of input dependents.

4. Incremental methodology and
preliminary results

The methodology for the development of the AGRA
program is a learning cycle that alternates automatic
assignments based on the current KB and manual updates
of the current KB. It must be clear that, differently from
most existing approaches, the various KB’s are built
manually. The role of the automatic assigner, in fact, is to
test the coverage of the KB’s. The (manual) learning
cycle is carried out as follows:
1. Apply the AGRA to a corpus of unlabelled trees

(learning set) using a bootstrapping KB.
2. Inspect the result of the assignment and detect the

assignment errors.
3. Update manually the KB, in order to correct (most of)

the detected errors. This update can produce the
introduction of new non-verbal rules, new basic
VSP’s, new assignments of verbs to a VSP, and
(rarely) new transformations.

4. Apply the updated KB to the initial corpus in order to
check the correctness of the newly introduced rules,
and to verify which of the original errors have been
corrected.

5. Apply the rules to a set of sentences (test set) other
than the original ones, in order to evaluate the
coverage of the KB on unseen data.

6. Extend the learning set (new sentences are added) and
go to step 2.

It is usually claimed that manual approaches are labour-
intensive and error-prone. So, most of the methods

described in the literature involve learning programs
applied to large corpora (e.g., the Penn Treebank).
Although we agree on the big effort required to apply an
approach as the one described above, we must note that
any automatic method must exploit a large corpus, a
resource which is currently missing for Italian. On the
contrary, our method starts from a small hand-built
unlabeled treebank, and the result (instead of a starting
point) is a (small) labeled treebank for Italian.

In the bootstrapping phase, we have manually built an
initial kernel of the three components (excluding
semtypes) from general linguistic knowledge. This initial
KB included 10 subcat frames, 3 transformations
(passivization, pro-drop rule, infinitivization), 30 modifier
relations.

At the current stage of development, we have run three
learning cycles; the error rates are reported in Table 1,
while the size of the KB is described in Table 2. It has just
to be noted that the 192 labels used after cycle 3 are not
the same as in the previous row. Some new labels have
been introduced, but a more rational scheme has been
devised, so that the total number remained unchanged. To
provide the reader with a feeling of the label types, we
report in Table 3 the 28 complement labels (which would
require some discussion, that we omit for space reasons).
The remaining 164 labels (192 minus 28) are adjuncts and
non-verbal GRs.

Learning
cycle

Training Set
Sentences (words)

Test Set
Sentences (words)

ERRORS
Training Set Test Set

1
2
3

200 (4610)
500 (11809)
800 (18677)

50 (1063)
50 (1063)

100 (2378)

-
1376 (11.65%)
1693 (9.07%)

252 (23.66%)
187 (17.59%)
374 (15.73%)

Table 1 - Experimental results: Errors in label assignment in the three cycles of development.

The errors on the training set after the first cycle were not evaluated.

Learning
Cycle

Non-verbal
+ adjuncts

labels rules

Basic VSP

labels classes verbs

Transformations

Semtype infos

1
2
3

30
192
192

30
264
389

12
20
28

10
44
64

42
122
167

3
11
12

0
274
360

Table 2 - Size of the various components of the KB after the different learning cycles

Standard Predicative Sentential Miscellaneous To be Locutions
subject
object
ind-obj
second-obj
empty-rel

pred-compl scompl-obj
scompl-ynobj
scompl-qobj
scompl-cause
modal-sub

 topic
 theme
 result
 to-loc
 in-loc
 su-loc

time-spec
pmod-possess
compl-compar
num-eval
manner-spec
manner

vadv-neg
locut-prep
locut-pred
locut-object
locut-adv

Table 3 - Complement labels after cycle 3

4.1. Error Analysis
There appears to be a rather high number of errors within
the learning set. This is due to:
1. Difficulty to decide the correct (semantic) label for

some relations (as for con in in contraddizione con (in
contradiction with), or di in periodo di attesa (period
of latency)

2. Difficulty to decide the correct criteria enabling the
system to choose the (known) correct label (as in
gruppi di livello adeguato - groups of adequate level -
where gruppi di - groups of - should be labeled as
prepmod-eval).

3. Difficulty to decide the correct criteria for assigning
verbal labels (rivoluzioni che [object] non si [impers-
subject] sono mai viste - revolutions which nobody
has ever seen - vs. ragazze che [subject] non si
[object] sono mai viste - girls who never saw each
other)

4. Difficulties for handling ellipses, which currently
receive a very poor treatment.

In any case, most of the errors are due to the goal of
assigning semantic labels. In case this is not required (so
that, for instance, a prepmod label is always taken as
correct, independently of its semantic interpretation) the
error rate drops considerably.

Learning
Cycle

Words Total
errors

Overspec
errors

VSP match
errors

Ellipsis
errors

Others

3

2378 374
(15.73%)

228
(9.59%)

94
(3.95%)

17
(0.72%)

35
(1.47%)

Table 4 - Distribution of error types

As can be seen in table 4, among the 374 errors in the

test set of the last stage, 228 were due to the (semantic)
over-specification of non-verbal labels (i.e. 61% of the
total number of errors). This means that, if we disregard
labels as prepmod-origin, or adjunct-time, by labeling the
arcs simply as prepmod or adjunct, the labeling errors are
just 146 (i.e. 6.14% of the total).

Among them, most errors are due to the match of
verbal case frames (3.95%). There are two major sources
of these errors. The first one is the presence of particular
sets of dependents for which rather specific (and complex)
rules have to be devised. Some examples of this type of
situation were reported earlier (see section 3 and the four
points above); three more are presented below:
a) Il 95% dei bambini vedono la luce …

Thesing 95% of the babies seepl the light (i.e. were born) …
 (here, the agreement constraints between the actual subject
 and the verb are not respected)

b) I tiranni noi li vogliamo vedere …
The tyrants we them want to see
(here, there is a raising of li (them) from the governed ‘to
see’ to the governing modal ‘want’. This is done for the true
object ‘the tyrants’, but not for the enforcing clitic ‘them’)

c) In molti scommettono sulla vittoria …
In manysubj bet on the victory
(here, the surface form of the subject - i.e. a PP governed
 by ‘in’ - is not admitted in the VSP).

Of course, the VSP’s can be extended suitably, but this
cannot be done without verifying that the noise introduced
by such extensions does not affect negatively the overall
error ratio.

The second source of errors are relative clauses, for
which we currently lack both agreement with the noun
governing the clause (i.e. agreement is enforced with the
relative pronoun che - who, which, that -, which does not
carry any number or gender information), and ordering
constraints (so that if the relative pronoun is followed by
another NP - i.e. a nominal dependent - the pronoun is
taken as subject and the other NP is taken as object, which
is usually wrong). Again, some of these errors can be

avoided by introducing suitable tools (feature migration
and more ordering constraints).

4.2. Related work
It seems reasonable to state that, given the above

observations, the final results are comparable with the
ones reported in the literature, although comparisons are
hard because of the difference in methodology and goals.
For instance, (Buchholz 1998) reports a success rate
between 91.6% and 94.8%. But her task is rather different:
she aims at classifying as complement or adjunct a
dependent according to the surrounding context. So, for
instance, a to-loc (i.e. a complement) classified as an
adjunct-loc-to (i.e. an adjunct) counts as an error both for
her and for us, but an exchange between subject and
object is an error in our case, but it can hardly arise in
Buchholz’s system, where labels are already provided by
the Penn treebank annotation scheme. On the contrary, we
assume the existence of VSP, whereas subcategorization
infos can be absent in Buchholz’s experiments (without
them, she gets 91.6% of correct labels, while we could not
obtain anything).

In a subsequent experiment, Buchholz, Veenstra, and
Daelemans (Buchholz et al. 1999) tried to determine the
impact of enriched input on the performances of a
Grammatical Relation Assigner. Although in this case the
task is much more similar to our experiments, it has to be
noted that their results refer just to Verbal Dependents (i.e.
to the more difficult part of the task). Our figures should
be compared with the ones reported in the sixth row of
table 5 in (Buchholz et al. 1999), labelled as “GR with all
chunks, without ADVFUNC label on perfect test data”.
But the availability of chunks does not mean that the
connection with the verb is available (our unlabelled arcs),
so we have more information available. On the other hand,
the number of complement labels on which they run the
test is much smaller than ours, and, again, they have the
Penn treebank as a reference in their supervised learning
task. Their results are 77.2% correct assignments; in our

case, we must refer just to verbs. In the test set, there are
355 main verbs (excluding auxiliaries), and the 94 VSP
match errors correspond to 68 wrong VSP identifications
(if a VSP involves more than one dependent, more than
one labelling error is induced by a single error in VSP
identification). This corresponds to 19.1% of errors on
VSP analysis, which approaches Buchholz et al.’s results.

Also (Brants & Skut 1997) have faced the problem of
grammatical relation assignment in the context of
interactive text annotation. In particular, what they call
“degree 1 of automation” corresponds rather closely to
AGRA, since in level 1 “the user determines phrase
boundaries and syntactic categories (S, NP, VP, …). The
program automatically assigns grammatical functions”
(Brants & Skut 1997). Their approach to KB development
is based on statistical learning of a Markov trigram model.
The assignment results are similar to ours, since the
authors report an overall success rate of 94.2% (table 1),
which should be compared with 6.14% of errors we found
with the reduced tagset. Notice, in fact, that the complete
tagset adopted in (Brants & Skut 1997) includes just 17
tags.

5. Conclusions
This paper has presented an approach the assignment

of grammatical relations. This work is part of a project for
a treebank development through the introduction of a
flexible annotation schema, where the software tool for
GR assignment is a specialized module.

The annotation schema is centered upon predicate-
argument structures expressed by subcategorization
frames, that are essentially sets of grammatical relations
(also called VSP). The reference syntactic paradigm is
dependency grammar. Grammatical relations are arranged
on a hierarchy from generic to specific ones: parsers and
human annotators can employ underspecified elements
when there is uncertainty upon specific grammatical
relations.

The assignment of grammatical relations is realized by
the module AGRA, that works with hand-coded heuristic
rules, that apply syntactic and semantic preference
constraints.

Preliminary results are comparable with other
approaches, when considered in face of the high number
of GR labels, which allow a very rich corpus annotation.

6. References
Boella G., Lesmo L., (1998) Automatic Refinement of

Linguistic Rules for Tagging. In Proceedings of 1st
International Conference on Language Resources and
Evaluation (LREC 98), Granada, pp.923-930.

Brants, T., Skut, W., Uszkoreit, H., (1999) Syntactic
annotation of a German newspaper corpus. In
Proceedings of Treebanks workshop - Journées
ATALA sur les corpus annotés pour la syntaxe, 18-19
juin 1999, Paris, pp.69-76.

Brants T., Skut W., (1998) Automation of Treebank
Annotation. In Proceedings of the Conference on
Methods in Language Processing (NeMLaP-3) January
14-17, 1998, Sidney, Australia, pp.49-58.

Brants T., Skut W., Krenn B., (1997) Tagging
Grammatical Functions. In Proceedings of EMNLP-97,
1997, Providence, RI, USA, pp.64-74.

Buchholz S., (1998) Distinguishing Complements from
Adjuncts using Memory-based Learning. Proc.
ESSLLI-98 Workshop on Automated Acquisition of
Syntax and Parsing, Saarbruecken, Germany.

Buchholz S., Veenstra J., Daelemans W.: Cascaded
Grammatical Relation Assignment. EMNLP/VLC-99,
University of Maryland, USA, June 21-22, 1999.
CL/9906004.

Collins M.: Three Generative, Lexicalized Models for
Statistical Parsing. In Proceedings of the 35th Meeting
of the Association for Computational Linguistics (ACL
97) (1997), 16-23.

Ferro L., Vilain M., Yeh A.: Learning Transformation
Rules to find Grammatical Relations. Workshop on
Computational Natural Language Learning (GNLL-99)
(1999), 43-52.

Hajic J., (1998) Building a Syntactically Annotated
Corpus: the Prague Dependency Treebank In Issues of
Valency and Meaning, Karolinum, Praha, pp.106-132.

Hudson R., (1990) English word grammar. Basil
Blackwell, Oxford and Cambridge, MA.

Lombardo V., Lesmo L., (in press) A formal theory of
dependency syntax with non-lexical units. To appear in
Traitement Automatique des Langues.

Mel’cuk I.: Dependency syntax: theory and practice,
SUNY University Press, 1988.

Marcus M.P., Santorini B., Marcinkiewicz M.A., (1993)
Building a Large Annotated Corpus of English: The
Penn Treebank, Computational Linguistics, 19, pp.313-
330.

Marcus M.P., Kim G., Marcinkiewicz M.A., et al., (1994)
The Penn Treebank: Annotating Predicate Argument
Structure. In Proceedings of The Human Language
Technology Workshop, San Francisco, Morgan-
Kaufmann.

Moreno, A., Lopez, S., (1999) Developing a Spanish
treebank. In Proceedings of Treebanks workshop -
Journées ATALA sur les corpus annotés pour la
syntaxe, 18-19 juin 1999, Paris, pp.51-58.

Skut W., Krenn B., Brants T., Uszkoreit H., (1997) An
Annotation Scheme for Free Word Order Languages. In
Proceedings of the Fifth Conference on Applied Natural
Language Processing (ANLP), Washington, D.C..

Skut W., Brants T., Krenn B., Uszkoreit H., (1998) A
Linguistically Interpreted Corpus of German in
Newspaper Texts. In Proceedings of 1st International
Conference on Language Resources and Evolution
(LREC 98), Granada, pp.705-713.

Stock, O., (1989) Parsing with Flexibility, Dynamic
Strategies, and Idioms in Mind. Computational
Linguistics, Vol.15, Num.1, March 1989, pp.1-17.

Vilain M., (1999) Inferential Information Extraction, in
M. T. Pazienza (ed.), Information Extraction, LNAI
1714, Springer, pp. 95-119.

