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Abstract 
This paper presents a method for the assignment of grammatical relation labels in a sentence structure. The method has been 
implemented in the software tool AGRA (Automatic Grammatical Relation Assigner), which is part of a project for the development 
of a treebank of Italian sentences, and a knowledge base of Italian subcategorization frames. The annotation schema implements a 
notion of underspecification, that arranges grammatical relations from generic to specific one onto a hierarchy; the software tool works 
with hand-coded rules, which apply heuristic knowledge (on syntactic and semantic cues) to distinguish between complements and 
modifiers.  
 

1. Introduction  
Recent work in corpus-based linguistic analysis has 

pointed out the necessity of including predicate-
argument structures in treebank annotation schemata 
(Marcus et al. 1994) (Skut et al. 1997). This permits the 
collection of large data bases of subcategorization 
frames and their relative statistics, that are of valuable 
help for the accuracy of parsing models (Collins 1997), 
and in the implementation of IE systems (Vilain 1999).  

Existing annotation schemata roughly rely on two 
basic syntactic paradigms: phrase structure grammars 
and dependency grammars. The project described in 
this paper adopts a dependency-based annotation 
schema, which immediately recalls the notion of 
predicate-argument structure. Dependency formats 
seem to be specially adequate for non-configurational 
languages, for example free-word order languages (cf. 
Skut et al. 1997). Italian can be classified as a partially 
configurational language, where SVO order is only the 
preferred arrangement when a sentence is interpreted in 
isolation; all the other 5 permutations can often occur in 
naturally occurring texts1. 

The major advantage of including predicate-
argument relations into the annotation schema is the 
possibility of having an accurate description of the roles 
played by the syntactic units in the sentence structure. 
However, this descriptive richness can produce a large 
amount of ambiguity. The selection of the correct set of 
grammatical relations occurring in a sentence can 
become a relevant workload for both an automatic 
parser and a human annotator. Therefore, most 
researchers have devised software modules specialized 
in the assignment of grammatical relations (GRs). 
These modules usually rely on stochastic methods 

                                                      
1 Note that we do not know how often, since this is one of the 
goals for constructing a treebank including predicate-
argument structures. 

(Brants et al. 1997) and/or machine learning techniques 
(Buchholz et al. 1999) (Ferro et al. 1999). A common 
characteristics of all the approaches is to keep low the 
number of GR labels (around a dozen): this satisfies 
some trade-off between the accuracy of the syntactic 
description and the tractability of the assignment task. 

The solution proposed in this paper is to realize this 
trade-off through a flexible annotation schema, where 
syntactic categories and grammatical relations are 
arranged on a hierarchy from generic to specific ones, 
implementing a notion of underspecification. When 
specialization is possible, the parser and/or the 
annotator descend the hierarchy to assign specific GR 
labels; otherwise, they stop at some higher point in the 
hierarchy, where relation labels cover a larger number 
of cases. The software module for GR assignment 
(called AGRA, Automatic Grammatical Relations 
Assigner) implements a number of heuristics that take 
into account the hierarchical organization. Heuristics 
are expressed as condition-action rules, which realize 
the mapping between GR labels and the syntactic 
structures of arguments. The rules are hand-coded, and 
incrementally updated through cycles of rule 
application and manual error analysis on a set of 
sentences used for training. As far as we know, this is 
the first attempt of building such a module for Italian, a 
partially configurational language where GR 
assignment depends on a number of factors, like word 
order, case suffixes and semantics. 

The paper is organized as follows: in the next 
section we outline the annotation schema, with some 
examples; then we describe AGRA, with the hand-
coded rules and the search engine for rule application; 
finally we illustrate the cycles of rule application and 
error analysis, with some numerical results and the 
comparison with other approaches. 

 



 

Figure 1. Dependency tree of the sentence “E’ italiano, come progetto e realizzazione, il primo porto turistico 
dell’Albania” (It is Italian, as for project and realization, the first tourist port in Albania). This figure, which is in the 

interface format of the annotation tool, is realized with the DaVinci program. 
 

 

 

 

 

 

 

Figure 2. A partial view of the hierarchy of grammatical relations: only adjectival and prepositional modifiers. 

 

2. An annotation schema for an Italian 
treebank  

A dependency-based annotation schema permits a 
perspicuous representation of Italian sentences, which 
feature a non-configurationality at the verbal level (this 
means that the dependents of a verb are loosely 
constrained in the linear order). Subject-Verb-
Complement (a generalization of SVO) is the most likely 
order, but the other five permutations may occur as well. 
Consider the following examples : 

 
[Le autorità di Tirana]SUBJ [hanno scelto]VERB [il 

progetto....]COMP  
“The authorities of Tirana have chosen the project ... ”  
[E']VERB [italiano]COMP, [come progetto e 

realizzazione]MOD , [il primo porto turistico 
dell'Albania]SUBJ  

“It is Italian, as for design and realization, the first 
tourist port of Albania” 

Anche [sull'Albania]COMP [soffia]VERB [il vento della 
protesta]SUBJ. 

“The wind of protest blows over Albania too” 

In fig. 1 there is a dependency tree from the treebank 
(for the second sentence).  

The characteristics of non-configurationality make 
Italian a language for which the assignment of 
grammatical relations is particularly relevant. 
Grammatical relations can exhibit various degrees of 
specificity with respect to a number of properties of the 
relation arguments: syntactic category, semantic type, 
several morpho-syntactic features. However, GR 
assignment becomes a very difficult task, as the variety 
and the specificity of GR labels increases. In order to 
reach a valuable trade-off between richness of description 
and tractability of assignment (being performed by a 
human annotator or an automatic assigner) the GR system 
proposed in this paper offers a high degree of flexibility. 
Flexibility is related to the fact that dependency relations 
are organized hierarchically (from generic to specific ones 
(Fig. 2)). In the dependency literature, a similar system is 
proposed by (Hudson, 1990), who extends the hierarchical 
organization to all the grammar elements. For example, 
the relation between a noun (head) and an adjective 
(dependent) is an adjectival modification (adjcmod) that 
can be further specified on the basis of the adjective 
features (qualificative, possessive, indefinite, …). When 

dependent 

modifier complement 

adjcmod prepmod 

qualif poss indef deit ord topic loc part-of 



GR assignment becomes a hard ambiguity problem, the 
assigner can generalize to some grammatical relation 
selected from the upper levels of the hierarchy.  

In the adjectival part of the hierarchy, shown in figure 
2, the feature information in the POS tag can help in 
selecting the correct grammatical relation (it depends on 
the type of adjective). See, for example, the POS tags of 
the adjectives “primo” (first) and “turistico” (tourist) in 
figure 1. But this is not always the case. In fact, the 
situation is much more intricate for prepositional 
modifiers. Again, in figure 1, it is hard to decide the 
specific grammatical relation of the prepositional modifier 
“come progetto e realizzazione” (as for project and 
realization): in this case, the annotator can select a more 
general (see figure 2) prepositional modifier (prepmod). 

Penn Treebank researchers adopt a similar solution in 
the phrase-structure format when an annotator is sure that 
a sequence of  words is a certain major constituent but 
cannot decide its syntactic category. The solution is to 
introduce a generic constituent label X (Marcus et al. 
1993). This approach corresponds to the application of a 
two-level underspecification mechanism: the annotator 
has only one possible recover for annotation uncertainty. 
In our approach, the annotator can use multiple degrees of 
abstraction.  

Now we turn to the automatic GR assigner (AGRA). 

3. The software tool for the assignment of 
grammatical relations (AGRA) 

 
The assigner works on a data structure representing an 
unlabelled dependency tree. In other words, the input 
specifies, for each node, its syntactic dependents. So, the 
task of the assigner is to perform a match between the set 
of actual dependents and the possible dependents2. A 
knowledge base of rules for the assignment of GR label 
(described below) determines the number and the relations 
of the possible dependents. 

The match is performed in different ways, according to 
the syntactic category of the governor. For all categories, 
except verbs, the match is performed on single links. So, 
in case the governor is a noun, AGRA inspects each 
dependent, and applies the assignment rules to the pair 
governor-dependent in order to find out the correct label. 
It is clear that this approach overgeneralizes: nothing 
prevents from having multiple links with the same label, 
without any contextual check of the mutual compatibility. 
However, since the assigner is run on real text, this 
situation can hardly arise3.  

With respect to verbal labels, the assignment is based 
on Verbal Subcategorization Patterns (VSPs). These can 

                                                      
2 The unlabelled trees are the result of two tools developed 
previously: a POS tagger and an interactive parser. Both of them 
work on unrestricted texts. The tagger works left-to-right in a 
single step and is based on condition-action rules (Boella & 
Lesmo 1998). The interactive parser takes in input the POS-
tagged sentence and produces a dependency parse tree, by 
proposing graphically tentative parse trees to the human 
annotator while proceeding incrementally from left to right 
(Lombardo et al. 1999). 
3 But it can happen that the presence of a link could help to 
disambiguate another link, which, in the current implementation, 
cannot be accomplished 

be seen as classes of verbs: for each class, the VSP lists 
the set of obligatory grammatical dependents 
(complements). Here, the matching process is more 
complex. In fact, it has to be checked that all complements 
appearing in the VSP are present without repetitions in the 
input pattern. This task interacts with the presence of 
adjuncts: both an adjunct and a required complement have 
the same surface realization. Consider, for instance: 
- Questa domenica l'ho passata proprio bene 
  (This sunday it [I] have spent really well:  
   I have spent this sunday really well) 
- Questa domenica l'ho vista proprio bene 
  (This sunday her [I] have seen really well: 
   This sunday, I saw her really well) 
In this case, This sunday plays the role of direct object of 
the verb to spend in the first sentence (with l’ as a 
reinforcement clitic), while it plays the role of a temporal 
adjunct (with l’ acting as true direct object) in the second 
sentence. 

Moreover, surface realizations could be altered in the 
input as a consequence of several phenomena: passives, 
the pro-drop facility of Italian language, movements (like 
raising or equi). So, the matching process is augmented 
with a set of transformations, which enable the assigner to 
obtain a set of derived VSPs from the basic VSPs 
(subcategorization classes). 

One of the main task of this project is to devise a set of 
wide-coverage VSPs and transformations, so that the task 
of the lexicographer is reduced to find the right class(es), 
or VSPs, of a given verb (see section 4). In the next 
subsections we describe the assignment rules, split in non-
verbal plus adjunct rules (operating on individual links 
and do not take VSPs into account) and verbal rules 
(matching the set of dependents of a node with some VSP 
in the knowledge base).  

 
3.1 Non-verbal rules and adjuncts 
 
These rules are implemented as condition-action rules, 
with the pair <head-category, dependent-category> 
acting as an access key. So, for instance, we have: 
    <noun, adj>: noun-adjr1, noun-adjr2, ..., noun-adjrn 
Each rule (noun-adjri, in the example) has the form: 
 if condition then label 
A summary of the specific labels is in section 4. The 
condition part may take into account many pieces of 
information, some of which are discussed below: 
 
a. The syntactic subtype (subcategory) of the head or 

the dependent: as said in the previous paragraph, if 
the adjective has subcategory poss (possessive), then 
the label will be adjcmod-poss. 

b. The actual words: e.g. in case the connection is 
<noun, prep>, the governor word is opinione 
(“opinion”), and the dependent preposition is su 
(“on”), then the link is labeled as prepmod-topic 

c. The semantic type of the involved elements: in case 
of <noun, prep>, the preposition is di (“by”), and the 
governor noun has the semantic category £auth-work4 

                                                      
4 Throughout the paper, semantic types are strings in italics 
prefixed by the symbol £. 



(e.g. sinfonia, romanzo: “symphony”, “novel”), then 
the assigned label will be prepmod-author. Notice 
that it is not part of the present project to develop a 
taxonomy of semantic classes. However, the use of 
semantic classes stresses the fact the no proper 
labeling can be obtained without such knowledge. 

d. Complex downward paths. This enables us to treat 
some flexible types of locutions. In the example di 
corsa (“of run” – “quickly”), we can have a 
specification where a verb (remember that these rules 
are used also for verbal adjuncts) governs di (“of”: 
preposition), which, in turn, governs the word corsa 
(“run”). The locution reading is unaffected by the 
presence of a modifier (e.g., an adjective, di gran 
corsa – “of great run” – “very quickly”).  

e. Deverbalized nouns as governors. In these cases (the 
fall of, the recognition of), a subject or object label 
(called, distinctively, n-subject and n-object) can be 
assigned on the basis of the transitivity of the original 
verb. 

 
Three rules are reported below. The first one is a rather 
standard rule. It specifies that if an adjectival dependent of 
a noun is of ordinal type, then the label must be adjcmod-
ordin (it applies to “for the fourth time” – the two words 
underlined are the arguments of the relation). The second 
rule involves a semtype and a path of length 2: if the 
preposition governed by a noun is di (“of”), and the word 
governed by di is of semantic type £time, then the noun-
prep label must be prepmod-time (this applies to 
l’intervista di sabato – “the saturday interview”). The 
third rule refers to a multi-word locution, a causa di 
(“because of”). If these three words form a chain of nodes 
in the dependency tree (a path of length 3), then the 
topmost link (linking the preposition a) must be labeled as 
adjunct-reason-cause (the other links are labeled as 
locution-cont, i.e. continuation of a locution, via other 
rules). 
 

        (noun-adj7      ((down (type ordin))) adjcmod-ordin) 
 
        (noun-prep-di20 

       ((down (word di)  
           (down (semtype £time))))    prepmod-time) 

 
        (verb-prep-a3    

     ((down (word a) 
                                 (down (word causa) 
                                          (down (word di))))) 
                       adjunct-reason-cause) 

 
Box 1 - Examples of non-verbal rules 

 
3.2 Verbal rules and transformations 
 

A basic verbal subcat pattern (VSP) has the following 
form (three components): 

(subcat-pattern-name  
 surface-realization  
 labels) 
The subcat-pattern-name is any string: trans, intrans, 

trans-dest are examples of names.  

Surface-realization and labels are two lists of the same 
length, where there is a correspondence between items in 
the same position. Items of the list labels are GR labels; 
items in the list surface-realization constrain the syntactic 
structure of the dependent fulfilling the grammatical 
relation which occupies the same position in the list 
labels. Surface-realization is described as follows: 

 (surf-descr1 surf-descr2 ... surf-descrm) 
In turn, each surf-descri has either the form 
 <category> 
or the form 
 (<category> restrictions) 
where the restrictions can be used to enforce any of the 

constraints described above for non-verbal rules (e.g. 
actual words or semtypes). An example of a VSP is 
reported in Box 2. 
 

    (trans-dest  
(( (noun (agree)) 

                    (art (agree)) 
                    (adj (semtype £geogr) (number pl) (agree)) 
                    (pron (case nom) (agree))) 
                 ( noun 
                   art 
                   (pron (not (type refl-impers)) (case acc)) 
                   (adj (semtype £geogr) (number pl))) 
                ( (prep (word a) (down (semtype £city))) 

  (prep (word in) (down (semtype £place) 
      (not (semtype £city))))) 

             (subject object to-loc)) 

Box 2 - Examples of a VSP 
 
It specifies that the class trans-dest applies to verbs 
requiring three dependents, which will be labelled as 
subject, object, and to-loc (see the labels component in the 
last line). Moreover, the subject can be a noun, an article 
(remember that determiners govern nouns), an adjective 
(geographical, as Italians) or a pronoun; all of them, in 
order to act as subject must agree with the governor. 
Moreover, in case the subject is a pronoun, it must appear 
in the nominative (nom) case. The object is similar 
(without agreement). The destination must be realized as 
the preposition a (to) governing a word of £city semtype 
or as the preposition in (in) governing any place other than 
a £city. The pattern applies to verbs as portare (to bring), 
inviare (to send), etc. 
 
Transformations are rules converting a VSP into another 
VSP. The resulting VSP is called derived VSP. The input 
VSP can be either a basic (not transformed) or a derived 
VSP. Some transformations can be applied to all patterns 
(e.g. pro-drop), while others apply only to a given subset 
of them (e.g. passivization applies only to the various 
transitive VSP). The possibility of applying a 
transformation to a derived VSP enables the system to 
obtain patterns such as, for example, passive infinitivized, 
which applies to di essere visto da lui (to be seen by him), 
where the subject is absent (infinitivization) and an agent 
complement can be present (passivization). After the 
application of the transformations, it is assumed that it is 
available a complete specification of all sets of dependents 
(complements) which can appear below a given verb. For 
instance, if the original definition of the verb amare (to 



love) includes only the trans VSP, after the application of 
transformations, it includes trans, trans+ passivization, 
trans+pro-drop, trans+infinitivization, trans+ 
infinitivization+passivization, etc. (a total of 16 patterns 
derived from trans). Now, when an occurrence of the verb 
amare is found in a sentence, the matching process is 
applied to all derived patterns. Again, adjuncts may cause 
problems, but the match is performed on the derived 
patterns exactly as on the basic patterns. Of course, all 
patterns include some applicability conditions (depending 
by the applied transformations), so that for instance, 
trans+infinitivization only applies to verbs in the infinite 
mood (conversely, the basic trans does not match a verb 
in the infinite mood). 

The matching process is based on the VSP of the verb. 
In Box 3 below, we show the basic matching procedure. 

 
procedure VSPMatch (Verb, InputDep) 
begin 
 /* Extract from dictionary all basic VSP’s of ‘Verb’ */ 
   VC := VerbClasses (Verb); 
 /* Extract from DB the definitions of all VSP’s (basic and 
   derived) associated with VC. This also checks the applic- 
   ability conditions (e.g. infinite form of ‘Verb’ for derived 
   VSP’s  obtained via infinitivization) */ 
   VSP := GetVSPComp (VC); 
   Found := false; 
   lev := 0; 
/* External loop for all levels (number of applied transform- 
    ations). MaxLevel currently set to 5. Do not inspect level 
   i+1 if solution found at level i */ 
   while not Found and lev <= MaxLevel do 
    begin 
      NextVSP := first (VSP, lev); 
      BestLabels := empty; 
/* Internal loop for all VSP’s at same level. The loop is not 
   exited when a solution is found: all VSP’s are tried in order 
   to find out the one with less adjuncts */ 
      while NextVSP is not null do 
         begin 
            CaseLabels := SingleMatch (NextVSP, InputDep); 
            if CaseLabels <> empty then 
               Found := true; 
               if Adjuncts (CaseLabels) < Adjuncts (BestLabels) 
               then BestLabels := CaseLabels; 
               nextVSP := next (VSP, lev) 
         end; 
     lev := lev + 1; 
end; 

Box 3 - The procedure which, given a Verb and its 
dependents, finds a match with the contents of the KB. 

First, all the basic subcategorization patterns (VSP names) 
of the verb are retrieved, and then the components of the 
VSP (both basic and derived) are extracted. The VSP’s are 
sorted according to how basic they are: basic VSP’s get a 
level of 0, VSP’s obtained via a single transformation the 
level 1, VSP’s obtained via 2 transformations the level 2, 
and so on. The VSP’s with a lower level are tried first: this 
corresponds to adopting a preference criterion where more 
basic VSP’s are preferred. In case a VSP of level k 
matches the input case frame, then all other VSP’s at the 
same level are tried, in order to find the one that matches 
with a minimum number of adjuncts; this is a weaker 
preference: at the same level (i.e. the same number of 

transformations applied) complements are preferred over 
adjuncts. In case no match is found, all links concerning 
dependents of the verb are labelled as Unknown. 
In Box 4, we report the function for matching a single 
VSP against the actual dependents; this is carried out by 
first looking for any match between all surface 
realizations of the cases in the VSP and one of the actual 
dependents. The function is implemented as a depth-first 
search, where each match between a complement and an 
actual dependent is a choice point. This implies that: 
• All complements are obligatory 
• No order is implicit in the VSP (but some order 

constraints can be expressed explicitly, if any) 
In case all the required complements are found, the 
remaining dependents are interpreted by using the rules 
for adjuncts. For each of them, at least one interpretation 
as an adjunct must be found, otherwise the whole match 
fails.  
 

/* InputDep is a Marked list of actual dependents; the marked 
    dependents are the ones which have already been matched 
    with a complement at some higher level of recursion */ 
function SingleMatch (Verb, VSP, InputDep) 
begin 
  if VSP = empty 
/* if all complements have been found, then try to match the 
   remaining actual dependents with adjuncts */ 
  then SingleMatch:= CompleteWithAdjuncts(Verb, InputDep) 
  else 
    begin 
      Found := false; 
      NextCompl := first (VSP); 
      NextInpDep := first-unmarked (InputDep); 
/* take the next element of the VSP (the first one, at this level  
    of recursion); initialize the loop on actual dependents */ 
      while not Found and not null NextInpDep do 
      begin 
/* if the actual dependent satisfies the surface description of  
   the first element of the VSP, then ElemMatch succeeds */ 
         firstMatch := ElemMatch (NextCompl, NextInpDep) 
         if firstMatch <> fail then 
           begin 
/* and the recursion proceeds on the remaining complements 
   (after having marked the Input Dependent to signal that it 
    has already been used in the match)  */ 
             result := SingleMatch (rest (VSP), 
                   Mark (InputDep, NextInpDep)) 
             if result <> fail then 
/* if the match succeeds on the remaining portion of the VSP,  
   then the task is accomplished */ 

begin 
  Found := true; 
  SingleMatch := append (firstMatch, result) 
end 

/* the first element matches, but the remaining ones do not; try 
   another possibility with the next Input Dep */ 
             else NextInpDep := Next (InputDep) 
           end   /* firstMatch <> fail */ 
/* the first element does not match: try another possibility  
    with the next Input Dep */ 
         else NextInpDep := Next (InputDep) 
      end    /* while */ 
  end; 

Box 4 - The function for matching a single VSP against a 
set of input dependents. 



4. Incremental methodology and 
preliminary results 

The methodology for the development of the AGRA 
program is a learning cycle that alternates automatic 
assignments based on the current KB and manual updates 
of the current KB. It must be clear that, differently from 
most existing approaches, the various KB’s are built 
manually. The role of the automatic assigner, in fact, is to 
test the coverage of the KB’s. The (manual) learning 
cycle is carried out as follows: 
1. Apply the AGRA to a corpus of unlabelled trees 

(learning set) using a bootstrapping KB. 
2. Inspect the result of the assignment and detect the 

assignment errors. 
3. Update manually the KB, in order to correct (most of) 

the detected errors. This update can produce the 
introduction of new non-verbal rules, new basic 
VSP’s, new assignments of verbs to a VSP, and 
(rarely) new transformations. 

4. Apply the updated KB to the initial corpus in order to 
check the correctness of the newly introduced rules, 
and to verify which of the original errors have been 
corrected. 

5. Apply the rules to a set of sentences (test set) other 
than the original ones, in order to evaluate the 
coverage of the KB on unseen data. 

6. Extend the learning set (new sentences are added) and 
go to step 2. 

 
It is usually claimed that manual approaches are labour-
intensive and error-prone. So, most of the methods 

described in the literature involve learning programs 
applied to large corpora (e.g., the Penn Treebank). 
Although we agree on the big effort required to apply an 
approach as the one described above, we must note that 
any automatic method must exploit a large corpus, a 
resource which is currently missing for Italian. On the 
contrary, our method starts from a small hand-built 
unlabeled treebank, and the result (instead of a starting 
point) is a (small) labeled treebank for Italian.  

In the bootstrapping phase, we have manually built an 
initial kernel of the three components (excluding 
semtypes) from general linguistic knowledge. This initial 
KB included 10 subcat frames, 3 transformations 
(passivization, pro-drop rule, infinitivization), 30 modifier 
relations.  

At the current stage of development, we have run three 
learning cycles; the error rates are reported in Table 1, 
while the size of the KB is described in Table 2. It has just 
to be noted that the 192 labels used after cycle 3 are not 
the same as in the previous row. Some new labels have 
been introduced, but a more rational scheme has been 
devised, so that the total number remained unchanged. To 
provide the reader with a feeling of the label types, we 
report in Table 3 the 28 complement labels (which would 
require some discussion, that we omit for space reasons). 
The remaining 164 labels (192 minus 28) are adjuncts and 
non-verbal GRs. 
 
 

 
 
 

Learning 
cycle 

Training Set 
Sentences (words) 

Test Set 
Sentences (words) 

ERRORS 
Training Set              Test Set 

1 
2 
3 

200   (4610) 
500   (11809) 
800   (18677) 

50 (1063) 
50 (1063) 

100 (2378) 

- 
1376 (11.65%) 
1693 (9.07%) 

252 (23.66%) 
187 (17.59%) 
374 (15.73%) 

 
Table 1 - Experimental results: Errors in label assignment in the three cycles of development. 

The errors on the training set after the first cycle were not evaluated. 
 
 

Learning 
Cycle 

Non-verbal 
+ adjuncts 

labels  rules 

Basic VSP 
 

labels classes verbs 

 
Transformations 

 
Semtype infos 

1 
2 
3 

30 
192 
192 

30 
264 
389 

12 
20 
28 

10 
44 
64 

42 
122 
167 

3 
11 
12 

0 
274 
360 

 
Table 2 - Size of the various components of the KB after the different learning cycles 

 
 

Standard Predicative Sentential Miscellaneous To be Locutions 
subject 
object 
ind-obj 
second-obj 
empty-rel 

 

pred-compl scompl-obj 
scompl-ynobj 
scompl-qobj 
scompl-cause 
modal-sub 
 

      topic 
     theme 
     result 
     to-loc 
     in-loc 
     su-loc 

time-spec 
pmod-possess 
compl-compar 
num-eval 
manner-spec 
manner 

vadv-neg 
locut-prep 
locut-pred 
locut-object 
locut-adv 

 
Table 3 - Complement labels after cycle 3 

 
 



4.1. Error Analysis 
There appears to be a rather high number of errors within 
the learning set. This is due to: 
1. Difficulty to decide the correct (semantic) label for 

some relations (as for con in in contraddizione con (in 
contradiction with), or di in periodo di attesa (period 
of latency) 

2. Difficulty to decide the correct criteria enabling the 
system to choose the (known) correct label (as in 
gruppi di livello adeguato - groups of adequate level - 
where gruppi di - groups of - should be labeled as 
prepmod-eval). 

3. Difficulty to decide the correct criteria for assigning 
verbal labels (rivoluzioni che [object] non si [impers-
subject] sono mai viste - revolutions which nobody 
has ever seen - vs. ragazze che [subject] non si 
[object] sono mai viste - girls who never saw each 
other) 

4. Difficulties for handling ellipses, which currently 
receive a very poor treatment. 

 
In any case, most of the errors are due to the goal of 
assigning semantic labels. In case this is not required (so 
that, for instance, a prepmod label is always taken as 
correct, independently of its semantic interpretation) the 
error rate drops considerably. 

 
 

Learning 
Cycle 

Words Total 
errors 

Overspec 
errors 

VSP match 
errors 

Ellipsis 
errors 

Others 

3 
 

2378 374  
(15.73%) 

228 
(9.59%) 

94 
(3.95%) 

17 
(0.72%) 

35 
(1.47%) 

 
Table 4 - Distribution of error types 

 
 
As can be seen in table 4, among the 374 errors in the 

test set of the last stage, 228 were due to the (semantic) 
over-specification of non-verbal labels (i.e. 61% of the 
total number of errors). This means that, if we disregard 
labels as prepmod-origin, or adjunct-time, by labeling the 
arcs simply as prepmod or adjunct, the labeling errors are 
just 146 (i.e. 6.14% of the total).  

Among them, most errors are due to the match of 
verbal case frames (3.95%). There are two major sources 
of these errors. The first one is the presence of particular 
sets of dependents for which rather specific (and complex) 
rules have to be devised. Some examples of this type of 
situation were reported earlier (see section 3 and the four 
points above); three more are presented below: 
a) Il 95% dei bambini vedono la luce … 

Thesing 95% of the babies seepl the light (i.e. were born) … 
 (here, the agreement constraints between the actual subject 
 and the verb are not respected) 

b) I tiranni noi li vogliamo vedere … 
The tyrants we them want to see 
(here, there is a raising of li (them) from the governed ‘to 
see’ to the governing modal ‘want’. This is done for the true 
object ‘the tyrants’, but not for the enforcing clitic ‘them’) 

c) In molti scommettono sulla vittoria … 
In manysubj bet on the victory 
(here, the surface form of the subject - i.e. a PP governed  
 by ‘in’ - is not admitted in the VSP). 

Of  course, the VSP’s can be extended suitably, but this 
cannot be done without verifying that the noise introduced 
by such extensions does not affect negatively the overall 
error ratio. 

The second source of errors are relative clauses, for 
which we currently lack both agreement with the noun 
governing the clause (i.e. agreement is enforced with the 
relative pronoun che - who, which, that -, which does not 
carry any number or gender information), and ordering 
constraints (so that if the relative pronoun is followed by 
another NP - i.e. a nominal dependent - the pronoun is 
taken as subject and the other NP is taken as object, which 
is usually wrong). Again, some of these errors can be 

avoided by introducing suitable tools (feature migration 
and more ordering constraints). 

4.2. Related work  
It seems reasonable to state that, given the above 

observations, the final results are comparable with the 
ones reported in the literature, although comparisons are 
hard because of the difference in methodology and goals. 
For instance, (Buchholz 1998) reports a success rate 
between 91.6% and 94.8%. But her task is rather different: 
she aims at classifying as complement or adjunct a 
dependent according to the surrounding context. So, for 
instance, a to-loc (i.e. a complement) classified as an 
adjunct-loc-to (i.e. an adjunct) counts as an error both for 
her and for us, but an exchange between subject and 
object is an error in our case, but it can hardly arise in 
Buchholz’s system, where labels are already provided by 
the Penn treebank annotation scheme. On the contrary, we 
assume the existence of VSP, whereas subcategorization 
infos can be absent in Buchholz’s experiments (without 
them, she gets 91.6% of correct labels, while we could not 
obtain anything). 

In a subsequent experiment, Buchholz, Veenstra, and 
Daelemans (Buchholz et al. 1999) tried to determine the 
impact of enriched input on the performances of a 
Grammatical Relation Assigner. Although in this case the 
task is much more similar to our experiments, it has to be 
noted that their results refer just to Verbal Dependents (i.e. 
to the more difficult part of the task). Our figures should 
be compared with the ones reported in the sixth row of 
table 5 in (Buchholz et al. 1999), labelled as “GR with all 
chunks, without ADVFUNC label on perfect test data”. 
But the availability of chunks does not mean that the 
connection with the verb is available (our unlabelled arcs), 
so we have more information available. On the other hand, 
the number of complement labels on which they run the 
test is much smaller than ours, and, again, they have the 
Penn treebank as a reference in their supervised learning 
task. Their results are 77.2% correct assignments; in our 



case, we must refer just to verbs. In the test set, there are 
355 main verbs (excluding auxiliaries), and the 94 VSP 
match errors correspond to 68 wrong VSP identifications 
(if a VSP involves more than one dependent, more than 
one labelling error is induced by a single error in VSP 
identification). This corresponds to 19.1% of errors on 
VSP analysis, which approaches Buchholz et al.’s results. 

Also (Brants & Skut 1997) have faced the problem of 
grammatical relation assignment in the context of 
interactive text annotation. In particular, what they call 
“degree 1 of automation” corresponds rather closely to 
AGRA, since in level 1 “the user determines phrase 
boundaries and syntactic categories (S, NP, VP, …). The 
program automatically assigns grammatical functions” 
(Brants & Skut 1997). Their approach to KB development 
is based on statistical learning of a Markov trigram model. 
The assignment results are similar to ours, since the 
authors report an overall success rate of 94.2% (table 1), 
which should be compared with 6.14% of errors we found 
with the reduced tagset. Notice, in fact, that the complete 
tagset adopted in (Brants & Skut 1997) includes just 17 
tags. 

 

5. Conclusions 
This paper has presented an approach the assignment 

of grammatical relations. This work is part of a project for 
a treebank development through the introduction of a 
flexible annotation schema, where the software tool for 
GR assignment is a specialized module. 

The annotation schema is centered upon predicate-
argument structures expressed by subcategorization 
frames, that are essentially sets of grammatical relations 
(also called VSP). The reference syntactic paradigm is 
dependency grammar. Grammatical relations are arranged 
on a hierarchy from generic to specific ones: parsers and 
human annotators can employ underspecified elements 
when there is uncertainty upon specific grammatical 
relations. 

The assignment of grammatical relations is realized by 
the module AGRA, that works with hand-coded heuristic 
rules, that apply syntactic and semantic preference 
constraints.  

Preliminary results are comparable with other 
approaches, when considered in face of the high number 
of GR labels, which allow a very rich corpus annotation. 
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