
ATLAS: A Flexible and Extensible Architecture for Linguistic Annotation

Steven Bird�, David Dayy, John Garofoloz,
John Hendersony, Christophe Laprunz and Mark Liberman�

�Linguistic Data Consortium, University of Pennsylvania, 3615 Market Street, Philadelphia, PA 19104, USA
yMITRE Corporation, 202 Burlington Road, Bedford, MA 01730, USA

zNational Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8940, Gaithersburg, MD 20899-8940, USA

Abstract
We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a
suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the
reuse of tools that interact through this API. We focus first on “Annotation Graphs,” a graph model for annotations on linear signals (such
as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide
range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider
variety of linguistic “signals,” including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions,
etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such
as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key
pieces of this architecture.

1. Introduction
Annotated corpora are a central component of research

in human language technology. As corpora have prolif-
erated across a rapidly expanding set of languages, disci-
plines and technologies, the lack of agreed standards has
become a critical problem. The standardization of tagsets
is necessarily an open-ended task, and will always be sub-
ject to revision as the underlying domains change and the
theories evolve. Yet with no agreed data models and appli-
cation programming interfaces (APIs), the bazaar of tools
and formats continues to expand, and incompatibilities pro-
liferate. Adapting existing annotation tools to new formats
often requires non-trivial re-engineering. Seen from this
perspective, general-purpose annotation tools and formats
are a distant prospect.

In recent work, Bird and Liberman (Bird and Liber-
man, 1999) have demonstrated commonality across a di-
verse range of annotation practice. Existing tools generally
implement a two-level architecture consisting of an appli-
cation level (the interface to a user or to external software)
and a physical level (the storage format). It is possible to
interpose an intermediate, logical level, which is indepen-
dent of the application and the physical storage (cf. the
three-level architecture for relational databases). Once this
step is taken, wide-ranging integration of tools and formats
becomes possible. The logical level we will propose in this
paper is based around the notion of an “annotation graph,”
which is a labeled, directed acyclic graph with time-stamps
on some of its nodes, anchoring the graph to a physical sig-
nal. Annotation becomes the fundamental act of associating
a symbolic property (the arc’s label) to an extent of signal
data (the arc’s time span).

ATLAS: “Architecture and Tools for Linguistic Anal-
ysis Systems” is a recent initiative involving NIST, LDC
and MITRE, arising from an array of applications needs
spanning corpus construction, evaluation infrastructure,
and multi-modal visualization. The principal goal of
ATLAS is to provide powerful abstractions over annotation

tools and formats in order to maximize flexibility and
extensibility. Our approach has been to isolate and abstract
over the physical and logical levels of annotation tools and
formats, leaving application- and domain-specific issues
to the side. The abstract physical level is a persistent
XML representation for long-term storage, exchange, and
pipelining, and this level is called ATLAS Interchange
Format (AIF). The abstract logical representation is the
internal representation for broad classes of data. It includes
linear signals (text, speech) indexed by intervals (i.e.
annotation graphs), images indexed by bounding boxes,
and additional generic representations for other data classes
(lexicons, tables, aligned corpora).

This paper is structured into three main parts. We be-
gin by describing the problem and our approach, then de-
scribe the open architecture. Next, we present the anno-
tation graph model and our generalization of it to higher
dimensions, before reporting progress on the implementa-
tion. We conclude with a discussion of future plans and an
invitation for wider participation.

2. The Bazaar of Tools and Formats

Over the last several years, there has been a veritable
bloom in new language technology research projects. Mea-
surable progress is being made in many core language tech-
nologies including automated speech recognition, informa-
tion extraction, information retrieval, machine translation,
natural language processing and others. To support the de-
velopment and evaluation of these technologies, there has
also been a boom in the development of language research
resources.

Not only are more of these projects being formed, they
typically adopt a shorter development cycle than has been
customary in the past. While much of this acceleration is
due to the availability of greatly increased processor speeds
and storage capacities, these projects are also benefiting
from the creation of spin-off projects focusing on integrated



Conversion Annotation

Query

Alignment

Evaluation

Extraction

Visualization

flat files
Tab-delimitedSGMLRDBStorage

Applications

Figure 1: The Two-Level Architecture

multi-component applications. The result is that many re-
searchers are beginning to develop toolkit approaches to
language technology development.

Unfortunately, to date, these efforts have almost always
been intra-domain. Likewise, the research corpora that
have been developed for these projects have been created
and deployed with minimal consideration toward re-use and
extensibility. We therefore live in a world with an increas-
ing variety of technology capabilities and a corresponding
wealth of research corpora, yet these capabilities and cor-
pora are domain-specific, task-specific, and often even site-
specific (see Figure 1).

Task Formats Tools
Hub-4 UTF (SGML) Hub-4 Transcription tools
ASR STM, CTM SCLITE

IE-ER UTF+ Alembic Workbench
NE99NS

TDT Raw text, RDB TDT Event annotation tools
Eval indexes TDTEval
TDT lists

SDR raw text, SRT TREC tools
SGML lists TREC EVAL
TREC qrels

ACE Raw text + ASR Alembic Workbench
+ OCR text EDT REF COMPARE
APF
ATLAS AIF?

Table 1: Broadcast News Tasks, Formats and Tools

For example, for several years, NIST has been organiz-
ing and implementing language technology evaluations for
several research domains using recordings and transcrip-
tions of radio and television news broadcasts (Table 1). Al-
though all of these evaluations have used basically the same
source data, each required the development of customized
formats and tools. Two years ago, NIST made an attempt to
unify its transcription formats with the SGML-based Uni-
versal Transcription (UTF) format (NIST, 1998) for the
DARPA Hub-4 ASR evaluations (Pallett et al., 1999). But,

in 1999, when the Hub-4 evaluation was expanded to in-
clude an entity recognition evaluation (Przybocki et al.,
1999), NIST found that the UTF format could not accom-
modate the different tokenization schemes required by the
ASR and extraction communities. It was at this point that
NIST realized the need for a more abstract, open-ended
transcription format that could accommodate such unfore-
seen changes. Such a format would have to been domain-
independent and permit any conceivable extension.

NIST believed that the best solution to the formats
dilemma could be achieved via a multi-site effort initially
including NIST, the LDC, and MITRE. NIST would con-
tribute its expertise in language technology evaluation and
infrastructure; the LDC would contribute its expertise in
corpus development including its recent research in abstract
annotation representations using annotation graphs, and its
involvement with the new ISLE and TalkBank projects
(ISLE, 2000; TalkBank, 2000), and MITRE would con-
tribute its expertise in language technology development
and annotation and visualization using the Alembic Work-
bench (Day et al., 1997). Thus, the ATLAS working group
was formed.

The group’s mission was to develop a general architec-
ture for annotation including a logical data format, an API
and tool-set, and a persistent data representation. The ar-
chitecture would, by definition, need to be modular, flexible
and extensible. First, this architecture would facilitate the
exchange and reuse of existing language resources. Such
resources would be moved in and out of the ATLAS frame-
work via conversion routines. As such, ATLAS could also
act as an interlingua for language corpora. Further, the ar-
chitecture would provide a platform for the extension of
such corpora and the development of new ATLAS-native
resources. The ATLAS philosophy would eschew the tra-
dition of imposing monolithic applications or formats on
the language research community. Rather, ATLAS would
serve as a conduit to enable the greater flow of language
resources throughout the language research community.

3. The ATLAS Architecture
ATLAS consists of three levels: application, logical,

and physical. The overall structure is depicted in Figure 2.
We discuss each of these layers in turn, beginning with the
middle, logical level.

Figure 2: ATLAS Layered Solution



3.1. The logical level

The logical layer consists of a linguistic formalism and
an API. The formalism is the annotation graph model and
its generalization to higher-dimensional cases. The for-
malism is a generalization of the annotation graph model,
called annotation sets. The API defines a set of procedures
for creating, modifying, searching and storing well-formed
annotation sets.

3.2. The physical level

The API specification will allow for a multiplicity of
physical storage implementations that applications are free
to access in various ways – via networked client-server
models, or via libraries linked directly into application bi-
naries, or via scripting languages. The two dominant stor-
age strategies that we are implementing are: ATLAS Inter-
change Format (AIF), an XML interchange format; and an
RDBMS accessible from ODBC-compliant calls.

The AIF XML format will provide a simple, wide-
coverage interchange format for which conversion
programs to and from other annotation formats are being
developed. The AIF XML annotations are “stand-off” in
the sense that they reference the signal being annotated
(whether text or speech, or some other modality). This
considerably simplifies the encoding of multiple layers of
annotation, especially those that would involve crossing
brackets if they were embedded in the signal data. Given
the generality of the annotation graph formalism, we
believe that AIF could serve as an interlingua for sharing
annotated linguistic corpora among language processing
applications, reducing the number of conversion tools that
need to be written.

The RDBMS implementation will provide efficient ac-
cess to large, heterogeneous linguistic databases, and open
the door to analysis of a nature and scale that was hitherto
impractical or impossible.

3.3. The application level

This level contains a rich diversity of components. The
annotation set formalism, as implemented in ATLAS, will
reduce the burden on language engineering applications de-
velopment. To demonstrate this claim, we are developing a
range of initial applications, as described below. The mod-
ularity provided by the API works for applications as well:
distinct components will communicate their operations on
annotations via the API, greatly enhancing the re-usability
of application-level components.

4. The Annotation Graph Model
Annotation graphs were presented by Bird and Liber-

man (Bird and Liberman, 1999) as follows.

Definition 1 An annotation graph G over a label set L
and timelines hTi;�i is a 3-tuple hN;A; �i consisting of a
node set N , a collection of arcs A labeled with elements
of L, and a time function � , which satisfies the following
conditions:

1. hN;Ai is a labeled acyclic digraph containing no
nodes of degree zero;

train/dr1/fjsp0/sa1.wrd: train/dr1/fjsp0/sa1.phn:
2360 5200 she 0 2360 h#
5200 9680 had 2360 3720 sh
9680 11077 your 3720 5200 iy
11077 16626 dark 5200 6160 hv
16626 22179 suit 6160 8720 ae
22179 24400 in 8720 9680 dcl
24400 30161 greasy 9680 10173 y
30161 36150 wash 10173 11077 axr
36720 41839 water 11077 12019 dcl
41839 44680 all 12019 12257 d
44680 49066 year ...

0
0

1
2360

P/h#
2

3270

P/sh
3

5200

W/she

P/iy
4

6160

P/hv
6

9680W/had
5

8720

P/ae P/dcl
7

10173

P/y
8

11077

W/your

P/axr

Figure 3: TIMIT Annotation Data and Graph Structure

2. � : N *
S
Ti, such that, for any path from node

n1 to n2 in A, if �(n1) and �(n2) are defined, then
�(n1) � �(n2);

Note that annotation graphs may be disconnected or
empty, and that they must not have orphan nodes.

The formalism can be illustrated with an application to
a simple speech database, the TIMIT corpus of read speech
(Garofolo et al., 1986). This was the first speech database to
be widely distributed. It contains broadband recordings of
630 speakers of 8 major dialects of American English, each
reading 10 phonetically rich sentences [www.ldc.upenn.
edu/Catalog/LDC93S1.html]. Figure 3 shows part of
the annotation of one of the sentences. The file on the
left contains word transcription, and the file on the right
contains phonetic transcription. Part of the corresponding
annotation graph is shown underneath.

In Figure 3, each node displays the node identifier and
the time offset (in 16kHz sample numbers). The arcs are
decorated with type and label information. The type W is
for words and the type P is for phonetic transcriptions.

A simplified chart showing the primary objects and their
relationships is shown in Figure 4. A graph object is a
collection of zero or more arc objects, where these spec-
ify an identifier, two nodes, a type, and the content. A
node specifies an identifier, a timeline, and an offset into
that timeline. A timeline simply denotes a set of signals
that share the same abstract notion of time (Bird and Liber-
man, 1999). For example, multichannel audio signals, or
aligned video and audio data are signal sets which have a

0..*

Arc

Graph

Id Type

Id Timeline Offset Feature:Value
0..*

Node

1..*

2
Content

Figure 4: The Annotation Graph Object Model



single time-base, and which would be grouped together by
a common timeline. The content object consists of a set of
feature-value pairs. The object identifiers are intended to
support incoming references from external resources, and
cross-references within a particular annotation graph. For
example, the value of some feature of a arc could be the
identifier of another arc.

The API for this model includes such functions
as Arc::insertArc(n1,n2,t,l) to insert an arc
from node n1 to node n2 with type t and label l, and
Arc::splitArc(a) to replace a single arc with a path of
two arcs spanning the same nodes.

5. Generalizing the Model
Annotation graphs are useful for annotating linear data

types, including intervals found in any particular dimen-
sion of a variety of sequentially-arranged signals. How-
ever, there are more signal types which we can envision
annotating, using the same basic philosophy of indication
and characterization. Below we give a generalization of an-
notation graphs to encompass a class of signal types which
correspond to n-dimensional vector spaces.

5.1. Higher-dimensional cases

There are many signals having dimension greater
than one, that we acquire in our computers, and that
are amenable to linguistic modeling techniques. The
input signal to optical character recognition (OCR) is
one example of a signal that loses (or at least obfuscates)
its temporal dimension prior to acquisition by computer.
When annotating the communicative content in a sign
language video, one may want to highlight the portion of
each of a sequence of images that is involved in the signing,
and the same should be done in a lip-reading experiment
where the input stream is television broadcast or movie, for
example. ATLAS strives to model the annotations required
in both reference and hypothesis data for an OCR system,
a sign language recognition system, lip-reading system, as
well as all well-formed combinations of these.

Annotation graphs, however, do not provide a natural
framework for identifying regions of a signal having more
than one dimension. Intuitively, we want to be able to
specify bounding boxes, or other kinds of bounding areas,
as a target for further characterization in the two dimensions
of OCR (x; y). The analogy carries for higher dimensions
such as video (x; y; t) where we want bounding volumes.
The generalization of annotation graphs that facilitates this
is Cartesian Annotation Sets. The name is chosen thus
because we want to select a region of a vector space, rather
than just an interval. For brevity we will usually refer to
these simply as “annotation sets.” Full details are given
below.

There are further generalizations of annotation being
explored, as one can imagine targeting signals which
inhabit spaces that are not results of repeated Cartesian
products (e.g. trees, partially ordered sets, relational or
semistructured data). The annotation sets cover a very
large set of signals that are captured by current digitizing
equipment, however, and they are a primary target for
development in ATLAS.

5.2. Annotation sets

In the terminology of annotation graphs, a labeled arc
relates symbolic label data to an extent of signal, and this
extent is specified using a pair of nodes. The arc serves
a dual purpose: as an ordered pair of nodes specifying an
extent; and as an entity which can accommodate label data.
We separate these functions by replacing nodes and labeled
arcs with some new constructs which reduce to nodes and
labeled arcs in the linear case.

We begin by adopting “region” as a term for any ex-
tent of signal, regardless of dimensionality. In the one-
dimensional case, regions are simply intervals, and there
are various ways to specify these (endpoints, start-point
plus offset, midpoint plus radius). The endpoint method
is convenient since the boundaries are typically shared by
several regions, and changing an endpoint value does not
then require any further propagation of information. In the
two-dimensional case we may specify regions using points
or line segments; we select “anchor” as the cover term.
Again, the choice of the anchoring method is based on the
need to share boundaries between regions. The terminol-
ogy extends to the three dimensional case, and is neutral as
to whether the dimensions are spatial or temporal. We de-
fine an ATLAS “annotation” to be a relation between such
regions and (structured) labels.

In the one-dimensional case, a collection of arcs is
formed into a graph, representing a set of annotations on
a particular signal. In the generalized model, we refer to
a set of annotations as an “annotation set”. A corpus is
then a set of annotation sets, and a collection of corpora
(such as LDC-Online) is a set of sets of annotation sets.
If the provenance of any particular annotation is stored in
its label, and if the signal information resides in the region
structure, then there is no harm in flattening this nested set
structure. Therefore we view “annotation set” as a top-level
construct.

6. ATLAS Design and Implementations
ATLAS is an open architecture that provides a flexible

and extensible framework for linguistic applications (Fig-
ure 5). Significant efforts have been put in the design to try
to ensure that the architecture will evolve gracefully as new
domains and tasks arise. The general philosophy behind
ATLAS design consists in trying to provide a component
framework on which new applications can be built and in
which new components can be integrated with ease.

We base our design approach on the object paradigm.
With respect to this approach, we have tried to clearly
identify the concepts that are needed to solve the annotation
problem, building on Bird and Liberman’s survey (see
[www.ldc.upenn.edu/annotation/]). We designed
program entities (objects) by assigning them clear
responsibilities and by separating the interface from the
implementation. This approach has several well-known
benefits; here we mention just three, and describe their
significance in the present context.

First, this approach allows us to define APIs to AT-
LAS components that are secure and controlled entry points
to the whole architecture. Second, we can vary the im-
plementations of components, offering customization and



Figure 5: ATLAS Architecture

“plug’n’play” capabilities to developers. Third, language-
independent interface definitions will permit ATLAS com-
ponents to be written using a variety of languages.

6.1. ATLAS APIs

The ATLAS APIs are defined to leverage the archi-
tecture in an efficient way. They provide entry points to
the functionality offered by the framework and ensure en-
capsulation of ATLAS internals, allowing enhancements to
be made to the core functionality without impacting back-
wards compatibility.

ATLAS will provide a collection of APIs that address a
variety of issues, built around the core annotation set API.
This core API provides means to create, edit and delete
annotations. It enables users and ATLAS developers to
manipulate annotation components at the lowest level of
abstraction.

Another set of components will support the core API
and provide persistent storage capabilities for the architec-
ture. These components will allow ATLAS-compliant tools
to abstract the specifics of physical storage and transpar-
ently interact with flat files or databases. A complete set of
input/output components will be provided for the ATLAS
Interchange Format (see below).

Components will be also developed which provide
higher-level services to ATLAS-compliant tools, easing the
task of creating those tools. These components will also
facilitate visualization and editing of annotations and will
support a query interface. They will allow third-parties to
easily and rapidly develop new ATLAS-compliant tools.

Finally, we are investigating the feasibility of creat-
ing components that will ease inter-component communi-
cation, transparent access to remote databases, and collab-
orative annotation.

0..*

Annotation

AnnotationSet

Id Region Type
1..*

2..* 0..*

Feature:ValueAnchor

SignalSet VectorId

Content

Figure 6: ATLAS Object Model

6.2. The core object model and API

A simplified chart showing the primary objects and their
relationships is shown in Figure 6. As in the annotation
graph object model (Figure 4), annotations specify an iden-
tifier, a type, and content. The key difference is that we have
abstracted away from one-dimensional annotation by pro-
viding the region object. The region object references two
or more anchors, where these can define an interval in 1-
space or a bounding box or polygon in 2-space. An anchor
carries an identifier (so that it may be shared by more than
one region), and it specifies a set of signals (generalizing
the notion of timeline).



Anchor::setOffset(Offset)
Set an anchor’s offset to the specified value

Anchor::getIncoming()
Get the incoming annotations to the specified anchor

Annotation::setStart(Anchor)
Set the start anchor of an annotation to the specified
anchor

Annotation::getStart()
Access the start anchor of an annotation

Annotation::setFeature(feature, value)
Set the specified feature of the annotation to this
value

AnnotationSet::add(Annotation)
Add a new annotation to the collection

AnnotationSet::split(Annotation)
Split an annotation, creating a sequence of adjacent
annotations

AnnotationSet::remove(Annotation)
Remove the annotation from the collection

AnnotationSet::getAnchorSetByOffset(Offset)
Get anchors with the specified offset

AnnotationSet::getByType(type)
Get the annotations of type t

AnnotationSet::getByFeature(feature, value)
Get the annotations with feature = value

AnnotationSet::getByTimeline(timeline)
Get annotations of this timeline

Figure 7: A Fragment of the ATLAS API

The API for the ATLAS object model is outlined in
Figure 7, in simplified form. For each method the object,
method name and arguments are specified. Up-to-date in-
formation about the API is available from the ATLAS web-
site.

6.3. ATLAS Interchange Format

An example of the current instantiation of the ATLAS
Interchange Format is shown in Figure 8. This example
shows two signals that exist outside this annotation file, one
a video of someone called Bill speaking in sign language,
and the other an ASCII file consisting of a transcription of
Bill’s utterances. One arc (A1) identifies a portion of the
video signal as containing Bill’s signing of the ASL letter
“e”. Another arc (A2) identifies a portion of the text sig-
nal as containing a word whose part of speech is “VBD”.
Finally, a third arc (A3) identifies a larger portion of the
video signal as being transcribed into the word (or, more
literally, the portion of the text signal) identified by the al-
ready defined A2 arc. Notice that the “content” of an arc
may contain either a set of attribute/value fields (arc A1), a
literal string or symbol (arc A2), or even a reference to an-
other arc by its unique identifier (arc A3). The exact syntax
of the ATLAS Interchange Format is still being refined, but
this example and the one following it indicate some of the
general components that will be supported.

<AnnotationGraph>
<AG_Signal SignalID="S1"
Format="video:mpeg-1" ArcTypes="ASL"
Location="file:bill.signing.mpeg"/>

<AG_Signal SignalID="S2"
Format="text:ascii" ArcTypes="NAR"
Location="file:bill.signing.narrative.cc"/>

<AG_Node NodeId="V0" Signal="S1"
Offset="382.520" units="Seconds"/>

<AG_Node NodeId="V1" Signal="S1"
Offset="383.922" units="Seconds"/>

<AG_Node NodeId="V2" Signal="S1"
Offset="384.731" units="Seconds"/>

<AG_Node NodeId="V3" Signal="S2"
Offset="78" units="Characters"/>

<AG_Node NodeId="V4" Signal="S2"
Offset="85" units="Characters"/>

<AG_Arc ID="A1" StartNode="V0"
EndNode="V1" Type="ASL">
<Content>
<Field> <!-- This is ASL sign "e" -->
<Feature>sign</Feature>
<Value>e</Value>

</Field></Content>
</AG_Arc>
<AG_Arc ID="A2" StartNode="V3"
EndNode="V4" Type="Part-of-Speech">
<Content>VBD</Content>

</AG_Arc>
<AG_Arc ID="A3" StartNode="V0"
EndNode="V2" Type="Transcription">
<Content>
<Field>
<Feature>AG_Arc</Feature>
<Value><AG_xref AG_Arc="A2"/></Value>

</Content>
</AG_Arc>
</AnnotationGraph>

Figure 8: AIF: An XML Interchange Format for ATLAS
Annotation Graphs

An example of an interchange format for structured lex-
icons is shown in Figure 9, in this case using a German to
English dictionary as an example. This example presents
only the most generic type of structure for defining a lexi-
con “signal,” consisting of an entry for each unique mean-
ing of a lexical item, and, as in the annotation graph ex-
ample before, using a general purpose set of Feature/Value
pairs to associate various features with an item. As noted
in section 5. on generalizing the model, ATLAS will en-
able more special-purpose XML elements and structure to
be derived and used for particular communities of interest,
while retaining the mapping from these back to a core rep-
resentation so that all relevant ATLAS-compliant tools can
operate on the data.

6.4. Implementation – current status

At LDC, Michelle Minnick Fox developed the
first implementation of the annotation graph API, in
Perl/tk. Subsequently, Steven Bird developed a C++
implementation (for both the graph and set APIs). A
team consisting of LDC researchers and programmers
Steven Bird, David Graff, Xiaoyi Ma, Kevin Walker,
Jonathan Wright and Zhibiao Wu has developed Perl and
Tcl interfaces, parsers for a wide variety of existing corpus
formats, and input/output to AIF. At NIST, Christophe
Laprun has developed a Java implementation of the
annotation graph API.



<AtlasSignal>
<Signal SignalID="LEX" Class="AtlasLexicon"

Format="AtlasLexicon:XML" Encoding="XML"
Comment="German-to-English Dictionary">

<Entry ID="E1034">
<Lexeme>reichen</Lexeme>
<Content>
<Field>
<Feature>PartOfSpeech</Feature>
<!-- Transitive Verb -->
<Value>VA</Value></Field>
<Field>
<Feature>Synonym</Feature>
<Value>give</Value></Field>
<Field>
<Feature>Synonym</Feature>
<Value>present</Value></Field>
...
<Field>
<Feature>Idiom</Feature>
<Value>
<Field>
<Feature>Source</Feature>
<Value>einem die Hand reichen</Value></Field>
<Field>
<Feature>Target</Feature>
<Value>hold out one’s hand to someone</Value>
</Field>
...

</Value></Field></Content>
</Entry>
<Entry ID="E1035">
<Lexeme>reichen</Lexeme>
<Content>
<Field>
<Feature>PartOfSpeech</Feature>
<!-- Intransitive verb -->
<Value>VN</Value></Field>
<Field>
<Feature>Synonym</Feature>
<Value>extend to</Value></Field>
<Field>
<Feature>Synonym</Feature>
<Value>suffice</Value></Field>
...

</Entry></Content>
</Signal>

</AtlasSignal>

Figure 9: An XML Interchange Format for Lexicons

6.5. Ongoing Activities

Work is ongoing in several areas at the three sites. NIST
is working with MITRE to implement an ATLAS archi-
tecture for the Automatic Content Extraction (ACE) pro-
gram Entity Detection and Tracking (EDT) evaluation, in
which Person, Organization, Geographical-Political, Loca-
tion, and Facility entities are to be detected, classified, and
clustered (ACE, 2000). The ACE-EDT program will evalu-
ate the application of EDT technology to text source, audio
source, and image source data. This multi-domain program
will be an important initial testbed for ATLAS.

NIST is using the ATLAS Interchange Format to im-
plement a new portion of the NIST Text REtrieval Confer-
ence (TREC) Spoken Document Retrieval Track in which
automatic speech recognition systems will be permitted to
output non-lexical information such speaker changes, noise
changes, pauses, etc. in addition to word transcriptions.
These speech-recognizer-produced files will be exchanged
among the research sites to examine the utility of multi-
ple recognizers and non-lexical information in performing
information retrieval from speech sources (TREC, 2000).

The ATLAS architecture will also be used to provide
an information aqueduct between components within the
DARPA Translingual Information Detection Extraction

and Summarization program (TIDES, 2000). The TIDES
program will examine issues in integrating multiple
language technologies in creating complex multi-media,
multi-lingual information systems.

MITRE has developed two tools that are being ported
to use the ATLAS annotation infrastructure: ALEMBIC

WORKBENCH, a text annotation tool that provides mech-
anisms for annotating lexemes, multi-word phrases, co-
reference relationships and discourse-level structured en-
tities; and the MULTI-MODAL LOGGER, which enables
multiple distinct signals (speech, text, application widget
events, etc.) to be aligned and displayed along a common
dimension (usually time) and annotated. MITRE is also de-
veloping a tool to support the declaration of new “signal”
classes in ATLAS, enabling customized XML DTDs to be
derived in a principled way such that ATLAS-compliant ap-
plications could operate on these data.

At LDC, development of new annotation tools has been
switched over to follow the ATLAS model, and we envisage
a day in the not-too-distant future when corpora will be re-
leased with a variety of cross-platform tools for accessing
and enriching the corpus content. We are exploring links
with developers of other tools, including Transcriber (Bar-
ras et al., 2000), Emu (Cassidy and Harrington, 1996), and
GATE (Cunningham et al., 2000), which have data models
that are conceptually close to the annotation graph model.
A diverse range of new domains for annotated corpora is
being addressed in the context of the CMU/Penn TalkBank
project (TalkBank, 2000), including annotated recordings
of animal calls, and annotated video of sign language. Re-
lational database schemas for annotation data are being ex-
plored, and a special purpose query language is being de-
veloped (Cassidy and Bird, 2000; Bird et al., 2000).

All of the code developed within the ATLAS initiative
will be distributed under open source licensing agreements.

7. Future
The envisioned ATLAS architecture will support a wide

variety of uses and data types. First and foremost, AT-
LAS will continue to fulfill its primary goal of enabling
the prodigious exchange of language resources. However,
in addition to providing support for the internal and exter-
nal data representations, it will include integrated access
to useful external resources such as database management
systems, network and security systems, and parsers (Fig-
ure 5).

As the ATLAS architecture is realized, it will enable the
rapid development of new corpora and the exchange and ex-
tension of existing corpora. It will facilitate the definition of
consistent logical and physical formats for meta data. It will
enable previously-impractical annotation endeavors requir-
ing multi-domain, multi-layered, multi-linked annotation.
It will become a focal point for the development and shar-
ing of modular reusable annotation components and tools,
thus permitting faster application prototyping and develop-
ment. These components will provide powerful visualiza-
tion, manipulation, and search capabilities over a variety of
corpora.

ATLAS will provide a built-in data infrastructure for
evaluation by minimizing the custom-tooling necessary in



instrumenting systems for performance measurement. The
ATLAS Interchange Format will facilitate the creation of
pipelined applications with multiple language technology
components. If desired, however, language technology ap-
plications and components will be able to eliminate pipelin-
ing altogether by using the ATLAS internal representation
as a annotation data exchange bus.

Once the initial instantiation of ATLAS is stabilized, it
will be made into an open-source entity that will benefit
from the contribution of tools and corpora from the world-
wide language research community. While the initial fo-
cus is on the annotation of text and speech corpora, we can
envision much broader applications of the architecture to
images, video, non-textual annotation, etc. Given the open
nature of the project, it is highly likely that it will evolve
in ways that we can’t currently predict. In order to gauge
the utility of our approach and to acquire input on possi-
ble uses, the ATLAS working group has created a public
website at: [http://www.nist.gov/speech/atlas].

Before the first public release of ATLAS is made in the
Fall of 2000, the ATLAS working group will be seeking
comment from potential users and developers. We invite
you to peruse the website and send us your input and ideas.

8. References
ACE, 2000. Automatic Content Extraction.

[www.nist.gov/speech/tests/ace].
Barras, Claude, Edouard Geoffrois, Zhibiao Wu, and Mark

Liberman, 2000. Transcriber: development and use of a
tool for assisting speech corpora production. Speech
Communication. To appear.

Bird, Steven, Peter Buneman, and Wang-Chiew Tan, 2000.
Towards a query language for annotation graphs. In
Proceedings of the Second International Conference on
Language Resources and Evaluation.

Bird, Steven and Mark Liberman, 1999. A formal
framework for linguistic annotation. Technical Report
MS-CIS-99-01, Department of Computer and
Information Science, University of Pennsylvania.
[xxx.lanl.gov/abs/cs.CL/9903003], expanded from
version presented at ICSLP-98, Sydney, revised version
to appear in Speech Communication.

Cassidy, Steve and Steven Bird, 2000. Querying databases
of annotated speech. In Proceedings of the Eleventh
Australasian Database Conference.

Cassidy, Steve and Jonathan Harrington, 1996. Emu: An
enhanced hierarchical speech data management system.
In Proceedings of the Sixth Australian International
Conference on Speech Science and Technology.
[www.shlrc.mq.edu.au/emu/].

Cunningham, H., K. Bontcheva, V. Tablan, and Y. Wilks,
2000. Software infrastructure for language resources: a
taxonomy of previous work and a requirements analysis.
In Proceedings of the Second International Conference
on Language Resources and Evaluation. Gate.ac.uk.

Day, David, John Aberdeen, Lynette Hirschman, Robyn
Kozierok, Patricia Robinson, and Marc Vilain, 1997.
Mixed-initiative development of language processing
systems. In Fifth Conference on Applied Natural

Language Processing. Somerset NJ: Association for
Computational Linguistics.

Garofolo, John S., Lori F. Lamel, William M. Fisher,
Jonathon G. Fiscus, David S. Pallett, and Nancy L.
Dahlgren, 1986. The DARPA TIMIT Acoustic-Phonetic
Continuous Speech Corpus CDROM. NIST.
[www.ldc.upenn.edu/lol/docs/TIMIT.html].

ISLE, 2000. NSF/EC ISLE Project.
[www.mpi.nl/world/ISLE/].

NIST, 1998. A universal transcription format (UTF)
annotation specification for evaluation of spoken
language technology corpora.
[www.nist.gov/speech/hub4 98/utf-1.0-v2.ps].

Pallett, David S., Jonathan G. Fiscus, John S. Garofolo,
Alvin Martin, and Mark A. Przybocki, 1999. 1998
broadcast news benchmark test results: English and
non-english word error rate performance measures. In
Proceedings of the DARPA Broadcast News Workshop.
Morgan Kaufmann.
[www.itl.nist.gov/iaui/894.01/proc/darpa99/].

Przybocki, Mark A., Jonathan G. Fiscus, John S. Garofolo,
and David S. Pallett, 1999. 1998 hub-4 information
extraction evaluation. In Proceedings of the DARPA
Broadcast News Workshop. Morgan Kaufmann.
[www.itl.nist.gov/iaui/894.01/proc/darpa99/].

TalkBank, 2000. NSF TalkBank Project.
[www.talkbank.org].

TIDES, 2000. DARPA Program in Translingual
Information Detection, Extraction and Summarization.
[www.arpa.mil/ito/research/tides].

TREC, 2000. TREC-9 Spoken Document Retrieval Track.
[www.nist.gov/speech/sdr2000/sdr2000.htm].


