
An Open Architecture for the Construction and Administration of Corpora

&RQVWDQWLQ 2U�VDQ DQG 5DPHVK .ULVKQDPXUWK\

Computational Linguistics Group
School of Humanities, Languages and Social Sciences

{C.Orasan, R.Krishnamurthy}@wlv.ac.uk
University of Wolverhampton

Stafford Street
Wolverhampton, WV1 1SB

United Kingdom

Abstract
The use of language corpora for a variety of purposes has increased significantly in recent years. General corpora are now available for
many languages, but research often requires more specialized corpora. The rapid development of the World Wide Web has greatly
improved access to data in electronic form, but research has tended to focus on corpus annotation, rather than on corpus building tools.
Therefore many researchers are building their own corpora, solving problems independently, and producing project-specific systems
which cannot easily be re-used. This paper proposes an open client-server architecture which can service the basic operations needed
in the construction and administration of corpora, but allows customisation by users in order to carry out project-specific tasks. The
paper is based partly on recent practical experience of building a corpus of 10 million words of Written Business English from
webpages, in a project which was co-funded by ELRA and the University of Wolverhampton.

1. Introduction

1.1. What is a corpus?
The term corpus has been used to designate a body of

naturally-occurring (authentic) language data which can
be used as a basis for linguistic research (Leech, 1997). A
corpus can consist of written texts and/or spoken texts of
general language, or it may represent only a particular
genre or language variety. Currently, the term corpus has
come to be applied specifically to a body of language texts
that exist in electronic format. The explosion of
information available online has made it easier to build a
corpus for a particular purpose by downloading relevant
texts from the World Wide Web.

1.2. What are corpora used for?
The use of corpora for a variety of linguistic and non-

linguistic purposes has increased rapidly in the past few
years. Teachers, students, and researchers in a variety of
fields (e.g. languages, business studies, law, medicine, and
engineering) use corpora for teaching materials, classroom
exercises, and dissertations. Software developers,
engineers, and programmers use corpora to develop
reference tools, CALL and NLP applications. However,
large general-purpose corpora are not suitable for many
tasks. And the rapid development of the web has
improved access to data significantly. As Jean Veronis
has suggested “Today, one can easily surf the web and
download millions of words in no time at all” (email
announcement on Euralex-list of Armstrong, 1999).

1.3. The need for more domain-specific corpora,
and software to aid in corpus building

In order to meet the demand for corpora, various data
initiatives and corpus projects have collected large
amounts of electronic texts, but there are still domains for
which corpora are not available. Therefore, when
researchers decide to work in such a domain, they have to

design their own corpora. This has given rise to a new
need: for generally available, flexible software.

1.4. The need for reusable corpus building
software

Another problem is the enormous duplication of effort:
it is not at all uncommon for researchers to develop tailor-
made systems that replicate much of the functionality of
other systems, and subsequently to create programs that
are highly purpose-specific and cannot be reused by
others. The reusability of programs and data is a much-
discussed topic in recent years, e.g. 109 references to
reusability in the documents at CORDIS, the European
Community Research and Development Information
Service website. Indeed, the existence and success of
linguistic resources distribution agencies such as ELRA
and LDC indicate the level of demand for reusable
resources. In particular, reusable software has become a
priority, to avoid constantly reinventing the wheel
(Veronis, 1996).

1.5. Research focus on corpus annotation tools,
rather than on corpus building tools

Much of the research in corpus linguistics has been
directed towards designing annotation schemes for
marking different linguistic features in the corpus texts
(Garside, 1997a; Mitkov, 1999), and designing tools for
doing this (Cunningham, 1996; Day, 1998; DeCristofaro,
1999; Garside, 1998b), but little attention has been paid to
the acquisition of the data which constitutes the corpus
(Davies, forthcoming). At the present moment we are not
aware of any tool that helps corpus builders in their work.
Given the large number of ad-hoc decisions that are made
during the building of a corpus, some people have
suggested that such a tool is impossible. However, we
consider that it is possible to design a very general-
purpose tool, which can be customized according to users’
needs. In this paper we propose a client-server architecture
that will implement the basic operations involved in
building and administering a corpus, while allowing users

to customize the specifications with minimum effort, and
to adjust the software to the needs of a specific corpus-
building project.

In Section 2 of this paper, we will summarize the main
steps involved in building a corpus, address some of the
problem areas, and outline some of the solutions adopted.
In Section 3, the proposed client-server architecture is
described and discussed. Section 4 indicates the
conclusions drawn from this proposal, based on recent
practical experiences in corpus building at
Wolverhampton University.

2. Main steps in building a corpus

2.1. General language corpora and more
specific corpora

In corpus linguistics, we are usually more interested in
a whole range of language, rather than in an individual
text or author. Therefore in building a corpus, we are
interested in collecting data which comes from more than
one source, and usually more than one genre. When
building a general corpus of this kind, any available data
can be included in the corpus. It is also possible to build
specific corpora which reflect the language used in a
certain domain (e.g. business language), and then only
data from that domain is included in the corpus.

2.2. Corpus composition
A corpus is not just a collection of texts. Rather it tries

to represent a language or a part of language (Biber,
1998). If there are many texts from the same source, they
can lead a researcher to false conclusions about the
language and any specific aspects of the language studied.
Therefore the first question which corpus builders have to
ask themselves is what types of data are going to be
included in the corpus and in what proportions. At this
point, the corpus builder usually has a clear view about the
categories and subcategories of the texts which are to be
collected.

2.3. Corpus size
When we are talking about building a corpus, we also

have to decide what size it is going to be. In a few cases,
the size of a corpus is not an important issue because the
collection of texts is dynamic and open-ended (e.g. the
Collins COBUILD Bank of English corpus at Birmingham
University). In most cases however, the size of the corpus
is known from the outset, and therefore there is a target
which has to be reached, which marks the end of the data
collection phase.

2.4. Data collection and copyright permission
After the decisions about corpus structure have been

made, the next step in building a corpus is the actual
collection of the data. Strictly speaking, for corpora based
on printed materials, once texts have been selected for
inclusion in the corpus, the obtaining of copyright
permissions should be the next step. However, we are
focusing on corpora based on domain-specific documents
obtained from the web and, as we explain later (see 2.10),
in this case the collecting of data usually precedes seeking
copyright permission, as it is not easy to identify the
candidate documents beforehand. The moment of

identification of a suitable document is also the most
obvious moment for downloading it.

2.5. Data collection methods
The data may consist of written or spoken language

texts. Recent experience (Krishnamurthy, 1992; Clear et
al. 1996) shows that the cheapest way to build a corpus is
to use data which already exists in electronic format. Data
can also be acquired by optically scanning printed
material (suitable only for good quality print and paper)
and thereby converting it into electronic format. This
method is slower and more expensive. Even slower and
more expensive is to keyboard printed texts, which is
necessary for poorer quality print and paper, and for
highly formatted texts, with words superimposed on
background images, or words running at various angles
across the page, and for non-sequential texts (e.g.
magazine articles, which are frequently interrupted by
highlighted extracted quotes or tables, illustrations,
advertisements, etc). Until speech-to-text technology
becomes more readily available, spoken material requires
a keyboarder to listen to an audio source tape of some
kind, and special equipment (with headphones, and foot-
controls for pause, rewind, fast-forward, and playback)
often has to be used to allow this transcription process to
take place with reasonable speed and in reasonable
comfort for the transcriber.

2.6. Data in electronic form: web-sourced
corpora

Given that it is the cheapest and fastest way to collect
data for a corpus, most corpora include large amounts of
data which is already in electronic format. As mentioned
earlier, with the current explosion of online information
available, this task is becoming easier. In the remainder of
this paper, the emphasis will be on building corpora using
data from the web, but most of the discussion will also be
relevant for other methods of data collection.

2.7. Web documents and the need for additional
information about the documents

When a document is collected (the technical term
inherited from librarians is accession) for inclusion in the
corpus, various additional information about the text has
to be recorded. This includes, for example, the source of
the document, the date when the document was collected,
and the person who collected it. In cases where the corpus
includes monolingual documents in more than one
language, the language in which the document is written
also has to be recorded. This information is required for
two reasons. Firstly, it is necessary for measuring progress
and for other statistical procedures, e.g. to know how
many files have been collected for each language, etc.
Secondly, the information is required in order to know
which tool to use in subsequent processing, for example
part-of-speech tagging, as a different version of the
tagging tool will need to be used for each language. Even
for monolingual corpora, the specific information about
the source of the document can be useful, e.g. for
identifying and isolating texts belonging to specific
varieties of the language. By recording the additional
information at the time of data collection, we avoid the
need for a more laborious and intensive retrospective
categorization of texts at a later stage, when some of the

information may no longer be readily available. In the
case of domain-specific corpora, the texts can be
immediately categorized according to predefined
categories. One could argue that the recording of
additional information at the time of data collection slows
down the process of collecting data. This is true, but it
saves a lot of time later, and the categorisation of texts is
an important and necessary part of corpus documentation.

2.8. Data collection staff and the recording of
additional information about web
documents

The task of data collection is often carried out by
relatively unqualified people, on low-paid short-term
contracts, with little motivation, and little interest in the
later stages of the corpus. When the corpus is built in a
university, the people involved in collecting data are
usually students. They work only few hours a week, and
they have different backgrounds and working styles.
Therefore the corpus builder must ensure that they all
record the same additional information about the
documents collected, and use the same format. As stated
earlier, this information is essential both for progress
measurement and statistical purposes, as well as for later
processing. If the information is not in the same format, a
lot of time is wasted in re-assembling it in a common
format for subsequent operations which have to be
implemented on the whole of the corpus.

2.9. Danger of data duplication
One danger particularly evident in building a corpus

from web documents is the duplication of data. It is
possible that two different data collectors may visit the
same website and download the same documents. This
causes a significant waste of time and effort in two ways:
the time and effort of the second person downloading
already collected data, and the additional time and effort
expended in detecting and removing the duplicate
documents. Detection is actually not so difficult: the
document URL (Universal Resource Locator) will occur
twice in the document list, signaling the likelihood of
duplication.

2.10. Obtaining copyright permissions for
documents collected

A major problem for all corpora, but especially for
web-sourced corpora, is the obtaining of copyright
permissions. Once web documents have been selected for
inclusion in the corpus, permission is sought. It is
necessary to keep a note of the documents for which
permission has been obtained, and those for which it has
not. Using their URLs, it is possible to cluster documents
belonging to a particular website. In an ideal situation, the
copyright permission is obtained before any data is
collected from that site. In this way there is no danger that
some of the collected data will have to be excluded from
the corpus because of lack of authorization. However,
from our recent experience, this is not a sensible option if
the project has to be completed in a limited timescale. An
added complication is that it often takes a long time to
obtain copyright permissions from a site, and during this
process a large number of messages may be exchanged
between the corpus builders and the copyright owners. All
these messages need to be stored safely, in case they need

to be referred to later. In some cases, the copyright owners
ask for a list of the files downloaded from their site. If this
information is not stored in a format that allows it to be
retrieved quickly, it is difficult to produce the list.

2.11. Original format of web documents
When a corpus is built using electronic documents

from the web, the documents first need to be saved in their
original format. This is necessary for two reasons: firstly,
the original format often contains useful information
which must be extracted for future use (e.g. the headers of
the HTML documents may contain information about the
author; keywords; the date when the document was
produced; the language in which it was produced, etc);
secondly, there may be no immediate and easy method to
convert the documents from their original format to the
desired format for the corpus (usually plain text format).
From our recent experience, most of the documents
currently on the web are in HTML format. The next most
common format is plain text (or almost plain; with some
form of markup, SGML or similar). Considerably fewer
documents are in Microsoft Word (.DOC) or Portable
Document Format (.PDF) formats. However this is only
our experience, and may not necessarily be valid for other
domains or document-types.

2.12. Format conversion
In most cases, the documents collected from the web

need to be converted from their original format to a
common format for the corpus. For input to various data
processing programs, such as concordances, part-of-
speech-taggers, etc, plain text format is probably the ideal
corpus format. Once all the documents have been
converted to a common format, various operational tools
and statistical programs can be applied. Some of the
information about the original formatting of the text (e.g.
superficial features such as font, font size, typeface, and
non-linguistic material such as statistical tables and
graphical images, etc) is not required for linguistic
analysis, therefore it can be removed from the corpus text
and this reduces text size and makes the text more easily
readable.

2.13. Corpus annotation
A corpus can be used as it is (as a collection of texts)

for linguistic research, but it becomes more valuable with
annotation. Depending on the purpose of the corpus,
different linguistic features of the texts can be marked. In
a very simple annotation scheme, only paragraph and
sentence boundaries may be marked. This is regarded as
minimal and obligatory annotation for most current
corpora. The next level of annotation is part-of-speech
tagging, where every word in the corpus is associated with
a tag indicating its grammatical category or word class.
Part-of-speech taggers have reached a fairly satisfactory
level of accuracy for most purposes, and so part-of-speech
tagged corpora are reasonably common and are available
in many languages. A higher level of grammatical
annotation is syntactic mark-up, where full or partial
parsing trees are marked for each proposition. This level
of annotation is rapidly developing, and parsed corpora
are now fairly widespread. The meaning of each word in a
text can be marked using semantic tags. However, this is a
considerably difficult task, so very few semantically-

tagged corpora are available as yet. The development of
corpora annotated with discourse entities is in its infancy.
Other linguistic features of the corpus texts can be
marked, e.g. prosodic, pragmatic and stylistic features, but
because of their intrinsic complexity and the difficulty of
making them machine-tractable, these levels of annotation
remain directions for future development.

2.14. SGML annotation
Current standard practice is to annotate corpus texts

using an SGML annotation scheme. For each document
selected for inclusion in the corpus, a program can apply
the specific SGML markup which has been adopted. If
such a program is not available, or its results are not
accurate enough, the texts will have to be annotated
manually, or at least semi-manually (e.g. using editing
macros in a word-processor environment).

2.15. Special characters
In some cases, converting a document from its original

format to plain text format can lose some useful
information. For example, if the text contains special
characters other than the ASCII character set (e.g.
mathematical symbols), these might be lost during the
conversion. Therefore, instead of converting a file to plain
text, the text is converted to an SGML format in which the
special characters are preserved and encoded in a standard
manner, called “entity references” (e.g. è stands
for è).

2.16. Multilingual corpora and representing
different character sets

With the increasing interest in multilingual
applications and environments, the need for flexible tools
that can generalise across several languages is evident.
The main concern in building a multilingual corpus is how
to represent the characters which are specific to different
languages, given that in standard ASCII set most of these
characters are not represented. One solution is given by
ISO 8859 which contains 10 extensions for different
languages. However, in an extreme case, it is possible that
the corpus may have languages in it which cannot be
represented by a single extension. In this case, each
document will have to have information attached to it
about the extension used. Another solution is offered by
Unicode, a character encoding system designed to support
the interchange, processing, and display of the written
texts of diverse languages of the modern world1. There is
no finalised version of Unicode as yet, and most corpus
software programs do not support it. If a corpus designer
does decide to use Unicode, the tools to be used will need
careful consideration. The third way of encoding non-
ASCII characters is to use entity references to replace
them, according to ISO8879.

1 “Unicode… will make multilingual software easier to
write, information systems easier to manage and
international information exchange more practical.” (Press
release by Unicode Inc, Mountain View, California, Feb
19, 1991)

2.17. Regularly updated websites and the need
for multiple visits

If texts from online newspapers or magazines are
being used in the corpus, the website may need to be
visited at regular intervals to download data. If the
frequency of update of the website is known, an automatic
procedure can be scheduled for this task. If not, a slightly
more complex procedure will need to be devised to do the
retrieval automatically, involving the comparison of
documents collected previously with the current website
documents. For most other websites, downloading will be
manual and once only, or at irregular intervals. The risk of
duplication still applies must be dealt with (see 2.9)

2.18. Structure of individual websites
Each website has its own structure, but some general

rules can be established to categorize webpages, and
classify them to be downloaded or not (e.g. image files
with .GIF or .JPEG suffixes, and audio files with the
.WAV suffix might be rejected). A general filter
mechanism can be designed, which can be enhanced with
specific filters for specific website features or special
requirements of the corpus.

3. The proposed approach

3.1. A client-server corpus building architecture
In the previous section we presented the main steps in

building a corpus. In order to complete the building of a
corpus in a short timescale and with minimal costs, as
many steps as possible have to be automated. In this
section we present a client-server architecture which will
help corpus builders in their tasks (Figure 1). This
architecture was designed using our experience during the
building of a written English business corpus from the
web.

3.2. Clients and a customisable server
The proposed architecture consists of several clients

which perform very specific operations like adding texts
to the corpus, or retrieving texts from the corpus for
format conversion or other processing, etc. The server will
be designed using a modular architecture and users will be
able to customize it according to their needs by adding
specific modules.

3.3. Modular programming: functionality and
interchangeability

The idea of developing independent program modules
to perform specific tasks is very familiar to computer
scientists. This technique is called modular programming.
A module is a section of code which performs a function
or a sub-function. Modules are usually stand-alone units.
Thus, for instance, if a module is attached to a program, it
should add only its own function to the program.
Similarly, if the module is removed, the program should
lose only the specific function which the module performs
(however it is possible that in some cases, where one
module depends on the results of another, other functions
will become unusable as a result of removing a module).
Another characteristic of program modules is their
interchangeability. Two modules which perform the same
function should be interchangeable without the user

noticing any difference in the results. Differences can
appear in performance parameters, such as running speed,
memory used, etc, but this is quite normal, given that the
implementations are different. The modules are very much
self-contained units which interact in a very specific way
with the program to which they are added.

3.4. Modular programming: ease of writing and
maintenance, and reusability

Modular programming makes writing programs and
maintaining them easier. Sections of programs can be
written and tested independently. Moreover, modules
written previously, which perform the required function,
can be immediately included in the program. In this way,
the time required for developing a new program is
considerably reduced. In projects involving more than one
programmer, modular programming becomes even more
beneficial, if not essential; each programmer can develop
one module at a time.

3.5. Program modules and off-the-shelf
programs

Thus, the program will come with some predefined
modules which perform very general operations, and users
will be able to add other modules which perform specific
operations. An example of a program module is one which
converts an HTML document into plain text. This
conversion can be done quite easily using an off-the-shelf
program like lynx2, but in our experience using the output

2 lynx is a general-purpose distributed information browser
for the World Wide Web which works on Unix based
systems in text mode. It is highly configurable and can be
easily used for converting large batches of HTML files
simultaneously

directly is not a good idea, because it often contains a lot
of information which is not needed for the corpus (e.g. for
online newspaper sites, each page will have links to the
main page, and maybe links to other related news items
from the same day, or previous days, or even previous
weeks). Instead, usually for each site, a filter has to be
designed to remove any such unwanted information. For
each site, there will also be a few files which cannot be
converted using this filter, and for which a different one
has to be designed.

During the format conversion phase of our recent
corpus project, we learnt that the easiest procedure is to
automatically convert the majority of files using a simple
filter, and then to manually convert files which cannot be
converted automatically. The identification of files which
fail to be converted automatically is relatively
straightforward. Either the number of words in the file
drops dramatically (in a few cases, we even obtained zero-
length files), or a simple search procedure reveals some
control character sequences which should have been
removed by the automatic conversion process.

3.6. The clients
The proposed architecture consists of different clients

for performing very specific operations like adding texts
to the corpus, or obtaining texts from the corpus for
modification. For each task which cannot be done
automatically, a client will be designed.

In most institutions, the corpus building project is only
one among several ongoing projects, and the people
working on it are only employed for a few hours per
week. Therefore, it is rarely feasible for an individual to
work on the same computer on every occasion, and
consequently the files they are working on (whether
during data collection or processing) will necessarily be
stored on more than one machine. When the corpus

Web

Corpus staff

Corpus staff

Corpus staff

SERVER

Modules

Text collected
& information

Status
messages

Database

Corpus

Lists
Error reports
Subcorpora

Progress report

Corpus staff

Corpus staff

Corpus staff

Manual operations
on individual files

Web

Corpus staff

Corpus staff

Corpus staff

Corpus staff

Corpus staff

Corpus staff

SERVER

Modules

Text collected
& information

Status
messages

Database

Corpus

Lists
Error reports
Subcorpora

Progress report

Corpus staff

Corpus staff

Corpus staff

Corpus staff

Corpus staff

Corpus staff

Manual operations
on individual files

Figure 1. The architecture of the system

building is completed, all the files which constitute the
corpus must be available on one computer in order to
carry out the final processing. So until that point is
reached, someone has to periodically check all the
computers to identify new data, and transfer it to the
corpus processing machine. This operation takes time, and
can introduce errors.

An alternative method is to use a specially designed
client to collect information about files which are going to
be added to the corpus, and send those files to a server
program which stores both the information and the files.
This approach has two advantages. Firstly, data collection
staff are compelled to provide all the relevant information
about the files. This information will include file names,
locations, dates, languages, copyright holders, etc, and the
program can ensure the uniformity and completeness of
the information content and format. After the information
has been entered, it is submitted to the server, which
stores it in a database. Secondly, this method ensures that
the version of the corpus on the server will always be up
to date. The server can reject any file which has already
been submitted on a previous occasion. Every time a file
is added to the corpus, it is sent to the server, and for
security reasons a copy of it is kept on the machine on
which the client runs.

Whenever a file is collected from a new site, the server
will ask for the copyright holder for the file. This may
slow down the process of collecting data somewhat, but it
will make the obtaining of copyright permissions easier.
For a file from a site which has been visited before, the
corpus staff can decide to use the information about the
copyright holder from the previous visit, or to provide
new information.

As mentioned earlier, it will not be possible to convert
all the files using automatic methods. Therefore the
original files will have to be obtained from the server,
converted by the corpus staff, and then resubmitted to the
server. Another client will be designed for this task. It is
useful not only for converting the files to plain text
format, but also for any other tasks which require human
intervention (e.g. manual annotation).

Given that the corpus staff will work on different
machines, some of which may run under Windows and
others under Unix, the best language currently available
for writing the programs is probably Java.

3.7. The server
The server software will carry out the basic operations

of administering the corpus building process, and will be
able to monitor the work of each member of the data
collection team. The software will also maintain a
database with various information relating to the project.

One set of information will relate to the files collected.
It will include the name of the file, its source, the date
when it was collected, the copyright holder, etc.
Depending on the requirements of the project, more
information can be stored for each file. The server will
keep a configuration file which indicates which
information is mandatory for each of the files collected.
This configuration file will be sent to the client which is
used for collecting data. The advantage of this approach is
that all the people involved in collecting data will provide
the same information. The corpus staff will submit this
information at the time when the file is collected.

The configuration file will be also used by the
database engine for storing the information about the files.
As regards the choice of database engine, our current
thinking favours ODBC (Open Database Connectivity),
because it was ported on different platforms.

Another type of information to be stored in the
database concerns copyright permissions. Our experience
has shown that more than one message will usually be
exchanged with the copyright holder, before permission is
granted. All these messages will be stored in the database
for future use. An automatic system for sending a standard
copyright request could be designed, but we consider that
this could be rather risky, and is likely to prove inefficient.

As mentioned earlier, different modules will be
included in the server for performing automatic
operations. These modules may be for converting files to
plain text format, or for adding automatic annotation.
Every time a file from the corpus is changed in any way,
either by a module which performs an automatic
operation, or manually by corpus staff, the changed
version will be stored separately, without altering the
original file. This is standard practice in corpus building,
and ensures that we can always revert to a previous
version of a file, or to the original file, at any time during
processing. Files may get corrupted, or be deleted by
accident, or a manual task may be poorly executed, so it is
a worthwhile precaution to keep the immediately
preceding version of a file, as only one process is then
required to restore it to current status.

The server can be used for generating a corpus using a
variety of different criteria. For example, if the corpus to
be generated is required to consist of only certain
categories of documents, only the files which belong to
those specific categories will be retrieved. The
information collected about each document can be used to
automatically generate and insert an SGML header for
each file.

Frequency lists, error reports, and progress reports can
also be generated automatically by the server on request.
These operations often require substantial processing time,
and are therefore better performed during slack or static
periods, for example overnight or at weekends, when the
system is not being heavily used.

4. Conclusions
The use of corpora for a variety of linguistic and non-

linguistic purposes has increased rapidly in the past few
years, leading to a great demand for general and specific
corpora. The process of corpus building is a new research
area, which lacks standardisation and appropriate tools. In
this paper we presented a highly customisable system for
building and administering corpora, based on a client-
server architecture that we hope will help corpus builders
in their task. Given the current explosion of online
information available and the recent experience gained in
building corpora, the main emphasis in this paper was on
building corpora from the Web, but most of the issues are
relevant for any form of corpus construction.

5. Acknowledgements
Some of the recent experience of web-based corpus

building was acquired during the Wolverhampton Corpus
of Written Business English Project, which was co-funded
by ELRA and the University of Wolverhampton.

6. References
Armstrong S., Church K.W., Isabelle P., Manzi S,

Tzoukermann E. and Yarowsky D. (1999): Natural
Language Processing Using Very Large Corpora,
Kluwer Academic Publishers

Biber D., Conrad S. and Reppen R. (1998): Corpus
Linguistics. Investigating Language Structure and Use,
Cambridge University Press

Clear J., Fox G., Francis G., Krishnamurthy R., Moon R.
(1996): COBUILD: The State of the Art, IJCL Vol 1
(2), John Benjamins, pp. 303-314

CORDIS, Community Research and Development
Information Service

Cunningham H., Wilks Y. and Gaizauskas R. (1996)
GATE – a General Architecture for Text engineering, in
Proceedings of the 16th Conference on Computational
Linguistics (COLING-96), Copenhagen

Davies M. (forthcoming): Creating Multi-Million Word
Corpora from Web-Based Newspapers, paper given at
the North American Symposium on Corpora, University
of Michigan, 1999

Day D., Aberdeen J., Caskey S, Hirschman L, Robinson
P, Vilain M. (1998): Alembic Workbench Corpus
Development Tool, in Proceedings of the First
International Conference on Language Resource &
Evaluation, Granada, Spain, pp. 1021 – 1028

DeCristofaro J., Strube M. and McCoy K.F. (1999):
Building a Tool for Annotating Reference in discourse,
in Proceedings of the Workshop on The Relation of
Discourse/Dialogue Structure and Reference,
University of Maryland, College Park, USA, 21 June
1999.

ELRA, European Language Resources Association,
http://www.icp.grenet.fr/ELRA/home.html
Garside R., Fligelstone S and Botley S. (1997a):

Discourse Annotation: Anaphoric Relations in Corpora
in Garside R., Leech G. and McEnery A. (eds) Corpus
Annotation: Linguistic Information from Computer Text
Corpora, Addison Wesley Longman, pp. 66 – 84

Garside R, Rayson P. (1997b): Higher-Level Annotation
Tools, in in Garside R., Leech G. and McEnery A. (eds)
Corpus Annotation: Linguistic Information from
Computer Text Corpora, Addison Wesley Longman,
pp. 179 -- 193

Krishnamurthy R. (1992): Working Papers for Network of
European Reference Corpora (Wordlists-WP5-87,
Concordancing-WP5-88, Data Collection-WP6/WP7-
57, Text Encoding-WP3-41) NERC, ILC, Pisa, Italy

LDC, Linguistic Data Consortium,
http://www.ldc.upenn.edu

Leech G (1997): Introducing corpus annotation, in
Garside R., Leech G. and McEnery A. (eds) Corpus
Annotation: Linguistic Information from Computer
Text Corpora, Addison Wesley Longman, pp. 1 –19

Mitkov R., Orasan C. and Evans R., (1999): The
importance of annotated corpora for NLP: the cases of
anaphora resolution and clause splitting, in Proceedings
of Corpora and NLP: Reflecting on Methodology
Workshop, TALN'99

Veronis J. and Ide N. (1996): Considerations for the
Reusability of Linguistic Software available at
http://www.lpl.univ-aix.fr/projects/multext/LSD/
LSD1.html

