
Software Infrastructure for Language Resources: a Taxonomy of Previous
Work and a Requirements Analysis.

Hamish Cunningham, Kalina Bontcheva, Valentin Tablan, Yorick Wilks

Department of Computer Science and
Institute for Language, Speech and Hearing,

University of Sheffield, UK
fhamish,kalina,valyt,yorickg@dcs.shef.ac.uk

Abstract
This paper presents a taxonomy of previous work on infrastructures, architectures and development environments for representing and
processing Language Resources (LRs), corpora, and annotations. This classification is then used to derive a set of requirements for
a Software Architecture for Language Engineering (SALE). The analysis shows that a SALE should address common problems and
support typical activities in the development, deployment, and maintenance of LE software. The results will be used in the next phase of
construction of an infrastructure for LR production, distribution, and access.

1. Introduction
This paper reports work following from

that discussed in the Distributing and Access-
ing Language Resources workshop at the pre-
vious conference in this series (LREC-1 1998;
http://www.dcs.shef.ac.uk/˜hamish/dalr/).
The paper addresses the provision of software infrastruc-
ture for research and development of language resources
and language processing software. It presents a wide range
of references to literature in this area, and a set of require-
ments that abstract from the work refered to. It is intended
as a resource for workers in the area, and as a design step
in the next phase of construction of an infrastructure for
LR production, distribution and access. The paper begins
with a description of what we mean by infrastructure,
drawing on software engineering sources. Following a
note on terminology relating to the common distinction
between processing and data in language processing R&D,
a review of previous work is presented as a stuctured set
of references. This taxonomy is then used to organise a set
of requirements for such infrastructures. The requirements
are presented as use cases. The results will be used in
the next phase of construction of an infrastructure for LR
production, distribution, and access, GATE, a General
Architecture for Text Engineering (Cunningham et al.,
1999).

2. Software Infrastructure for Language
Resources

The context of this work is the construction of software
infrastructure for language processing: software that is in-
tended to apply to whole families of problems within this
field, and to be like a craftsman’s toolbox in service of con-
struction and experimentation. We consider three types of
infrastructural systems: frameworks; architectures; devel-
opment environments.

A framework typically means an object oriented class
library that has been designed with a certain domain in
mind, and which can be tailored and extended to solve prob-
lems in that domain. They may also be known as platforms,
or component systems.

All software systems have an architecture. Sometimes
the architecture is explicit, perhaps conforming to certain
standards or patterns, sometimes it is implicit. Where an
architecture is explicit and targetted on more than one sys-
tem, it is known as a reference architecture, or a domain-
specific architecture. The former is “a software architec-
ture for a family of application systems.” (Tracz, 1995) The
term Domain Specific Software Architecture (DSSA – sub-
ject of an eponymous ARPA research programme (Hayes-
Roth, 1994; Tracz, 1995)) “applies to architectures de-
signed to address the known architectural abstractions spe-
cific to given problem domains.” (Clements and Northrop,
1996)

An implementation of an architecture that includes
some graphical tools for building and testing systems is a
development environment. One of the benefits of an expli-
cit and repeatable architecture is that a symbiotic relation-
ship with a dedicated development environment can arise.
In this relationship the development environment can help
designers confrom to architectural principles and visualise
the effect of various design choices and can provide code
libraries tailored to the architecture.

3. Language Resources and Processing
Resources

Like other software, LE programs consist of data and
algorithms. The current trend in software development is to
model both data and algorithms together, as objects. (Older
development methods like Structured Analysis (Yourdon,
1989) kept them largely separate.) Systems that adopt the
new approach are referred to as Object-Oriented (OO), and
there are good reasons to believe that OO software is easier
to build and maintain (Booch, 1994; Yourdon, 1996).

In the domain of human language processing R&D,
however, the choice is not quite so clear cut. Language data,
in various forms, is of such significance in the field that
it is frequently worked on independently of the algorithms
that process it. Such data has even come to have its own
term, Language Resources (LRs) (LREC-1, 1998), cover-
ing many data sources, from lexicons to corpora.



In recognition of this distinction, we will adopt the fol-
lowing terminology:

Language Resource (LR): refers to data-only resources
such as lexicons, corpora, thesauruses or ontologies.
Some LRs come with software (e.g. Wordnet has both
a user query interface and C and Prolog APIs), but
where this is only a means of accessing the underlying
data we’ll still define such resources as LRs.

Processing Resource (PR): refers to resources whose
character is principally programmatic or algorithmic,
such as lemmatisers, generators, translators, parsers or
speech recognisers. For example a part-of-speech tag-
ger is best characterised by reference to the process it
performs on text. PRs typically include LRs, e.g. a
tagger often has a lexicon.

PRs can be viewed as algorithms that map between differ-
ent types of LR, and which typically use LRs in the map-
ping process. An MT engine, for example, maps a mono-
lingual corpus into a multilingual aligned corpus using lex-
icons, grammars, etc.

Adopting the PR/LR distinction is a matter of conform-
ing to established domain practice and terminology. It does
not imply that we cannot model the domain (or build soft-
ware to support it) in an object-oriented manner; indeed
the models developed for this work are themselves object-
oriented.

The rest of the paper provides references to previous
work in this area, structured taxonomically. This taxonomy
is then used to organise a set of requirements for such in-
frastructures. The requirements are presented as a set of
twenty-two use cases which encapsulate the desiderata for
an ideal infrastructure for the support of Language Re-
source production, access and distribution.

4. Taxonomy
This part gives a brief review of the various approaches

that have been taken to SALE (for a longer review see
(Cunningham, 2000)). The prime criterion for considera-
tion in this part is being infrastructural. In order to provide
an organising principle for the discussion we begin in this
chapter by extrapolating a set of architectural issues that
represents the union of those addressed by the various re-
searchers cited. This has the advantage of being easier to
transform into software design and the disadvantage that
multipurpose infrastructures appear in several categories.
Cakes, eating them, etc. The breakdown of categories is as
follows.

1. Processing resources
(a) Locating, loading and initialising components

from local and non-local machines.

TalLab (Wolinski et al., 1998) Asynchronous
agent architecture inc. component execution
model.

Corelli/Calypso (Zajac, 1998b) The Calypso
Document Manager and component integra-
tion architecture.

GATE (Cunningham et al., 1995; Cunning-
ham et al., 1996c; Cunningham et al.,

1996b; Cunningham et al., 1996d; Cun-
ningham et al., 1996a; Cunningham et al.,
1997b; Cunningham et al., 1997a; Cunning-
ham et al., 1998b; Cunningham et al., 1998a;
Cunningham, 1999; Cunningham et al.,
1999; Gaizauskas et al., 1996) A General Ar-
chitecture for Text Engineering.

ICE (Amtrup, 1995) The INTARC Communic-
ation Environment for Verbmobil.

TIPSTER (Grishman, 1997)
(b) Executing processing components, serially or in

parallel.

Whiteboard architecture (Boitet and Se-
ligman, 1994) A distributed whiteboard
architecture with examples in a speech
translation system.

TalLab
Pantome (Edmondson and Iles, 1994a; Ed-

mondson and Iles, 1994b) Parallel architec-
ture exemplified in a text-to-speech applica-
tion.

TALISMAN (Stefanini and Deamzeau, 1995;
Koning et al., 1995) Distributed multi-agent
architecture exemplified in syntactic analysis.

ASL (von Hahn, 1994) A review of architectural
problems focussing on the issue of linearity,
and presenting the ASL architecture.

XeLDA (Poirier, 1999) Architecture and frame-
work for distributed collection of finite state
transducers (FSTs).

TIPSTER
Corelli/Calypso
GATE
ICE

(c) Representing information about components.

Constraint-based interfacing (Busemann,
1999) Using a constraint language to de-
scribe processing components in order to
facilitate integration.

TIPSTER
Corelli/Calypso
GATE
ICE
Verbmobil (Görz et al., 1996; Bos et al.,

1998) Inter-module interface language in
Verbmobil.

(d) Factoring out commonalities amongst compon-
ents.

Generic IE (Hobbs, 1993) Typical module set
for an IE system.

Tapestry (Cheong et al., 1994) A toolkit for
building IE systems exemplified in the MFE
IE system.

NLI+ (Johnson and Rosenberg, 1995) Portabil-
ity of NL interfaces to databases.



TARO (Ibrahim and Cummins, 1989) An OO
syntactic analyser toolkit based on a specific-
ation language.

Reiter and Dale (Reiter, 1994; Reiter, 1999;
Reiter and Dale, 1999; Reiter and Dale, 2000)
From the perspective of applied Natural Lan-
guage Generation work Reiter and later Dale
review and categorise NLG components and
systems. Reiter argues for descriptive prop-
erties of architectures vs. standardisation in
(Reiter, 1999).

RAGS (Cahill et al., 1999b; Paiva, 1998; Cahill
and Reape, 1998; Cahill et al., 1999a) The-
ory neutrality is harder to achieve in NLG
than in NLU; the RAGS project.

Generic IR (TIPSTER, 1995) Typical module
set for an IR system.

Architecture for IR (Cutting et al., 1991) An
OO architecture for IR systems.

Spoken Dialogue architecture (LuperFoy
et al., 1998) An architecture for spoken
dialogue systems.

TIPSTER
2. Language Resources, corpora and annotation

(a) Accessing data components.

EUDICO (Brugman et al., 1998) The EUDICO
distributed annotated corpora system.

Inquery distributed IR (Cahoon and McKinley,
1996) Making the Inquery IR system distrib-
uted.

W3-Corpora site (University of Essex, 1999)
Searchable on-line annotated corpora.

Ontolingua (Fikes and Farquhar, 1999) Distrib-
uted reusable ontologies.

Ontology efficiency (Hendler and Stoffel, 1999)
Efficient RDBMS backend for ontologies.

NLG Lexicon merging (Jing and McKeown,
1998) Merging large scale lexical resources
inc. WordNet and Comlex for NLG.

GATE/DALR (Peters et al., 1998; Cunningham
et al., 1998a) Distributing and accessing LRs.

(b) Managing collections of documents (including
recordings) and their formats.

EUDICO

TIPSTER
Corelli/Calypso
GATE

HTK (Young et al., 1999) An architecture
and framework for developing HMM-based
Automatic Speech Recognition.

(c) Representing information about text and speech.

EUDICO
Shiraz MT Architecture (Amtrup, 1999)

Chart- and unification-based architecture for
MT.

TEI and CES (Sperberg-McQueen and Burn-
ard, 1994; Ide, 1998a; Ide, 1998b; Ide and
Priest-Dorman, 1999) Text Encoding Initiat-
ive and Corpus Encoding Standard.

SGML and XML (Goldfarb, 1990; Goldfarb
and Prescod, 1998; Connolly, 1997; Nelson,
1997) Various sources on SGML and XML.

OODBs and SGML (Olson and Lee, 1997) Us-
ing Object databases for storing and retriev-
ing SGML documents.

LT NSL and LT XML (Mikheev and Finch,
Washington, DC, 1997; McKelvie et al.,
1997; Isard et al., 1998; Brew et al., 1999;
McKelvie et al., 1998) The Edinburgh
SGML and XML library and tools.

THI (Thurmair, 1996) Thurmair’s Text Hand-
ling Interface (based on SGML).

Corelli/Calypso
GATE
Annotation Graphs (Bird and Liberman, 1998;

Bird and Liberman, 1999a; Bird and Liber-
man, 1999b; Bird et al., 2000) Annotation
graph formalism, mainly applied to speech
annotation.

HTK
(d) Representing information about language.

RAGS
Shiraz MT Architecture
Eurotra architecture (Schutz et al., 1991) An

‘open and modular’ architecture for MT pro-
moting resource reuse.

GATE/DALR
TFw Terminology Framework (Fischer et al.,

1996) Abstract model of Thesauri and ter-
minology maintenance OO framework.

ARIES (Goni et al., 1997) Formalism and de-
velopment tools for Spanish morphological
lexicons.

FSTs and AVMs (Zajac, 1998a) Unified
FST/AVM formalism for morphological
lexicons.

GDEs (Netter and Pianesi, 1997; Estival et al.,
1997) Grammar development in an LE con-
text.

ALEP (Simkins, 1992; Simkins, 1994; Eriks-
son, 1996) Feature-structure based architec-
ture and development environment.

AVM-based framework (Zajac, 1992) A
framework for defining NLP systems based
on AVMs.

HTK
(e) Indexing and retrieving information.

Generic IR
TIPSTER DN2 (Buckley, 1998) A communic-

ation protocol based on Z39.50 for detec-
tion interactions between querying applica-
tion and search engine.



FireWorks (Hendry and Harper, 1996) A UI
framework for building IR systems.

P-OQL (Henrich, 1996) IR extensions for the
PCTE repository interface standard.

CUE (Mason, 1998) Indexing and search of an-
notated corpora.

W3-Corpora site
Corpus Query System (Christ, 1994; Christ,

1995) Indexing and search of corpora; link-
ing with WordNet.

TIPSTER
3. Methods and applications

(a) Method support
i. FST, unification and statistics over informa-

tion.
CMU-Cambridge Stat Modelling toolkit

(Clarkson and Rosenfeld, 1997) A set of
command-line tools for building ngram
language models.

Shiraz MT Architecture
HTK

ii. Comparing different versions of information.

DARPA (Sparck-Jones and Galliers, 1996)
ATIS, MT, etc. etc.

TEMAA (Paggio, 1998) Spelling and gram-
mar checker evaluation, and general evalu-
ation framework.

ETE (Li et al., 1998) A GUI test environ-
ment for NLU systems.

GATE
(b) Application issues

i. Storing information.

Ontology efficiency (Hendler and Stoffel,
1999) Efficient RDBMS backend for onto-
logies.

OODBs and SGML
GATE
HTK
EUDICO

ii. Deployment and embedding (executable pro-
grams; databases; libraries; components).
GATE
HTK
XeLDA

(c) Development issues
i. Interoperation with other infrastructures.

GATE
ii. Viewing and editing data components and in-

formation.
GATE

iii. UI access to architectural facilities (develop-
ment environments).
InfoGrid (Rao et al., 1992) UI and interac-

tion model framework for IR systems.
FireWorks
ETE
GATE
EUDICO
HTK

5. Requirements analysis
As its name suggests, GATE is intended to be general,

to cater for a wide range of LE activities and to encompass

a large number of the useful infrastructural activities that
have been identified by other work in this area. Given that
language processing is still very much a research field, this
task is potentially open-ended, and the question arises of
how to restrict the endeavour to manageable proportions.
The approach that we have taken is to make a distinction
between software that aims to solve some research goal and
software that provides an implementation of tasks that are
common to a number of research goals (and that are not
themselves active subjects of research). The latter are can-
didates for inclusion in the architecture; the former are not.
In other words, GATE provides infrastructure tools and not
research results: anything that is an open research topic is
not properly part of the architecture. How to implement cer-
tain common algorithms or data structures may be part of
the system; what algorithms and data structures to choose
for a particular application or research project is not.

Exceptions to the ‘no research’ rule are made for two
reasons. First, where a task is a valid research subject, but
nonetheless so common amongst LE systems that a SALE
will benefit greatly from the inclusion of a default imple-
mentation. Tokenisation of text is such a subject: whilst not
a solved problem (particularly for languages such as Japan-
ese or Chinese), still most researchers would prefer to take
a simple tokenisation scheme as read. Secondly, SALEs
must be developed in context, along with the processing
systems that will use them. In our case the primary con-
text has been Information Extraction research, and we have
actively distributed IE components along with versions of
GATE in order to promote both the architecture and work
on IE itself. (Note that these components are actually sep-
arate from GATE itself.

A SALE should support all the activities involved in the
development, deployment and maintenance of LE software.
In particular, anything that represents common ground
amongst LE applications (i.e. gets implemented regularly)
and anything done by support tools that help LE workers
is a candidate for desiderata for the architecture. We may
identify roles for SALE in the development of LE applic-
ations, technologies, methods and components. Examples
of these roles:
For applications, allow easy embedding in mainstream

software architectures (e.g. by exploiting component-
based devevelopment, Java, the Internet).

For technologies, provide measurement apparatus (e.g.
precision and recall of IE outputs relative to manual
annotation).

For methods, implement common algorithms (e.g. Baum-
Welch for HMMs, FST over annotation) and support
common data structures (e.g. annotation).

For components, provide abstractions that model their
commonalities.

We can classify SALE roles according to the issues that
have been addressed by previous work on LE infrastructure
using the taxonomy of chapter 7. This has the advantage of
being a reflection of infrastructure requirements that have
been developed in close association with the client group,
and it is this classification that we will use in this chapter,
which presents a set of use cases encapsulating the require-
ment set for GATE.



What are ‘use cases’? “In essence, a use case is a typ-
ical interaction between a user and a computer system”
(Fowler and Scott, 1997), but beyond this statement there
is no fixed definition of what they should look like ((Cock-
burn, 1997) cites experience of 18 variations). They are
partly defined by their purpose, which is to identify what
a computer system should do for its users. Fowler (Fowler
and Scott, 2000) identifies these properties:

� “A use case captures some user-visible function.

� A use case may be small or large.

� A use case achieves a discrete goal for the user.”

In keeping with our low-overhead development philosophy
our use cases are natural language descriptions of the ways
in which a SALE is used by its clients. Some of the use
cases below stretch the definitions a little and might perhaps
be called more accurately use desiderata; our belief is that
development processes should bend to fit developers and
their domains, not the other way around.

The clients of a SALE are the actors in use cases; they
may be human (software developers, researchers, teachers
or students) or software (the programs written and used by
the human clients). The client set includes:

� expert programmers producing applications software
that processes human language;

� non-expert programmers writing experimental soft-
ware for research purposes;

� systems administrators supporting language research-
ers;

� non-programming language researchers performing
experiments with software written by others;

� teachers of language technologies.

Section 5.1. gives general use cases; section 5.2. PR and
LR use cases; section 5.3. use cases relating to methods;
section 5.4. those specific to applications; section 5.5. those
for development environments.

5.1. General desiderata

Use case 1: LE research and development

Goal summary To support LE R&D workers producing soft-
ware and performing experiments.

Brief description During design, developers use the architec-
tural component of SALE for guidance on the overall shape of the
system. During development they use the framework for imple-
mentations of the architecture, and of commonly occuring tasks.
The development environment is used for convenient ways of ex-
ploiting the framework and of accessing common tasks. For de-
ployment the framework is available independently of the devel-
opment environment and can be embedded in other applications.

Use case 2: Documentation, maintenance, and support

Goal summary To document, maintain and support the archi-
tecture.

Brief description Without adequate documentation of its fa-
cilities an architecture is next to useless. Without bug fixes and
addition of new features to meet changing requirements it will not
evolve and fall into disuse. Without occasional help from experts
users will learn more slowly than they could.

Use case 3: Localisation and internationalisation
Goal summary To allow the use of the architecture in and for

different languages.
Brief description Users of the architecture need to be able to

have menus and at least some of the documentation in a familiar
language, and they need to be able to build applications which
process and display virtually any human language.

Use case 4: Software development good practice
Goal summary To promote good software engineering in LE

development.
Brief description We can derive a number of general desid-

erata for SALEs on the basis that they are used for software devel-
opment. In common with other software developers, SALE users
need extensibility; interoperability; openness; explicit design doc-
umentation in appropriate modelling languages; graphical devel-
opment environments; usage examples, or patterns.

Use case 5: Framework requirements
Goal summary To exploit the benefits of the framework.
Brief description Some general requirements for frameworks:
Orthogonality of elements: a user shouldn’t have to learn

everything in order to use one thing.
Availability of abstractions at different levels of complexity: a

user should be able to do something basic in a simple fashion, but
also be able to fiddle under the hood in a more complex scenario
if necessary.

5.2. Components, PRs and LRs

5.2.1. Locating, loading and initialising components
Use case 6: Locate and load components

Goal summary To discover components at runtime, load and
initialise them.

Brief description R&D developers create LR and PR compon-
ents and reuse those created by others. Experimenters, students
and teachers use components provided for them. Systems ad-
ministrators install components. Applications developers embedd
components in their systems. The set of components required in
different cases is dynamic and loading should be dynamic as a
consequence. The SALE should find all available components
given minimal clues (perhaps a list of URLs), load them and ini-
tialise them ready for use.

5.2.2. Executing processing components
Use case 7: PR and LR Management

Goal summary To allow the building of systems from sets of
components.

Brief description Developers need to be able to choose a sub-
set of the available components and wire them together to form
systems. These configurations should be shareable with other de-
velopers.

Use case 8: Distributed Processing
Goal summary To allow the construction of systems based on

components residing on different host computers.
Brief description Components developed on one computer

platform are seldom easy to move to other platforms. In order to
reuse a diverse set of such components they must be made avail-
able over the net for distributed processing. Networks are often
slow, however, so there must also be the capability to do all pro-
cessing on one machine if the component set allows.



Use case 9: Parallel Processing

Goal summary To allow asynchronous execution of pro-
cessing components.

Brief description Certain tasks can be carried out in parallel
in some language processing systems. This implies that the exe-
cution of PRs should be multithreaded and means made available
for parallel execution.

5.2.3. Representing information about components.
Use case 10: Component metadata

Goal summary To allow the association of structured data
with LR and PR components.

Brief description Components are wired together with execut-
ive and task-specific code to form experimental systems or applic-
ations. Component metadata helps automate the wiring process,
e.g. by describing the I/O contraints of the component. To use
components they have to be found: metadata can be used to allow
categorisation and description for browsing component sets.

5.2.4. Factoring out commonalities amongst components.
Use case 11: Component commonalities

Goal summary To factor out commonalities between related
components.

Brief description Where there are families of components that
share certain characteristics those commonalities should be mod-
elled in the architecture. For example language analyser PRs char-
acteristically take a document as input and add certain annotations
to the document. Developers of analysers should be able to extend
a part of the model which captures this and other characteristics.

5.2.5. Accessing data components
Use case 12: LR access

Goal summary To provide uniform, simple methods for ac-
cessing data components.

Brief description Just as the execution of PRs should be nor-
malised by a SALE, so access to data components should be done
in a uniform and efficient manner.

5.2.6. Managing collections of documents their formats
Use case 13: Corpora (Language Data LRs)

Goal summary To manage (possibly very large) collections
of documents in an efficient manner.

Brief description Documents (texts and audiovisual materi-
als) are grouped into collections which may have data associated
with them. Operations which relate to documents should be gen-
eralisable to collections of documents.

Use case 14: Format-Independent Document Processing

Goal summary To allow SALE users to use documents of
various formats without knowledge of those formats.

Brief description Documents can be processed independent
of their formats. For example, an IE system can get to the text
in an RTF1 document or an HTML document without worrying
about the structure of these formats. The structure is available for
access where needed.

1Rich Text Format, Microsoft’s Word document interchange
format.

5.2.7. Representing information about text and speech
Use case 15: Annotations on Documents

Goal summary To support theory-neutral format-independent
annotation of documents.

Brief description Many of the data structures produced and
consumed by PR components are associated with text. Even NLG
components can be viewed as producing data structures that relate
to nascent texts that become progressively better specified, cul-
minating in surface strings of words. See also interoperation use
case (annotation import/export to/from SGML/XML).

5.2.8. Representing information about language
Use case 16: Data About Language LRs

Goal summary To support creation and maintenance of LRs
that describe language.

Brief description Lexicons, grammars, ontologies, etc. etc.
all require support tools for their development, for example for
consistency checking, browsing and so on. (Note that this use
case is potentially very large, and may fall outside of our scope.)
In addition, developers of these types of resource use tools such
as concordancers (e.g. KWIC) which should be provided by the
development environment.

5.2.9. Indexing and retrieving information
Use case 17: Indices

Goal summary To cater for indexing and retrieval of diverse
data structures.

Brief description The architecture includes data structures for
annotating documents and for associating metadata with compon-
ents. These data structures need efficient indices to make compu-
tation over large data sets tractable.

5.3. Method support

Use case 18: Common algorithms
Goal summary To provide a library of well-known algorithms

over native data structures.
Brief description Although infrastructure should not in gen-

eral stray into open research fields, where a particular algorithm
is well-known it would be advantageous to provide a baseline
implementation. For example, finite state transduction over an-
notation data structures, perhaps unification, ngram models and
so on. (This use case is not under the annotation heading because
it would be advantageous to generalise its application across other
data structures and across text itself in some cases.)

Use case 19: Data comparison
Goal summary To provide simple methods for comparing

data structures.
Brief description Machine learning methods, evaluation

methods and introspective methods all need ways of comparing
desired results on a particular language processing task with the
results that a set of components has produced. In some cases this
is a complex task (e.g. the comparison of MUC templates was
found in some circumstances to be NP complete!), but in many
cases a simple comparison measure based on identity is useful for
a first-cut approximantion of success. This measure can be ex-
pressed as precision/recall where appropriate. (This use case is
not under the annotation heading because it would be advantage-
ous to generalise its application across other data structures and
across text itself in some cases.)



5.4. Application issues

Use case 20: Persistence
Goal summary All data structures native to the architecture

should be persistent.
Brief description The storage of data created automatically

by components or manually by editing should be managed by the
framework. This management should be transparent to a large de-
gree, but must also be efficient and therefore should be amenable
to tinkering where necessary. Access control may also be provided
here.

Use case 21: Deployment
Goal summary To allow the use of the framework in diverse

contexts.
Brief description The framework must be available in many

context in order to allow the transfer of experimental and proto-
type systems from the development environment to external ap-
plications and parts of applications. Users must be able to use
framework classes as a library, including classes of their own that
are derived from the framework classes. They should also be able
to build programs based on the framework by supplying their own
executive code, and be able to access data resources from other
contexts using standard database protocols.

5.5. Development issues

Use case 22: Interoperation and Embedding
Goal summary To enable data import from and export to other

infrastructures and embedding of components in other environ-
ments.

Brief description Formats and formalisms for the expression
of LRs come in many shapes and sizes. Some of these are dealt
with by wrapping those formats in code that talks the language of
the SALE framework. Other, widespread formats should be made
more generally accessible via import/export filters. The prime
case here is SGML/XML.

Certain common execution environments should be catered
for, such as MS Office, OLE and Netscape Communicator.

Use case 23: Viewing and Editing
Goal summary To manipulate LE data structures.
Brief description SALEs are used to view and edit the data

structures that LE systems process. This applies to both LRs and
PRs.

Use case 24: Development UI
Goal summary To give access to all the framework and archi-

tectural services and support development of LE experiments and
applications.

Brief description A large part of the story is components,
which can be viewed, edited, stored, accessed from the frame-
work API and so on. The final element is a UI for developers that
wires all these together and gives top-level access to storage and
component management, and execution of PRs.

6. References
Amtrup, J., 1999. Architecture of the Shiraz Machine

Translation System. http://crl.nmsu.edu/-

shiraz/archi.html.
Amtrup, J.W., 1995. ICE – INTARC Communication Environ-

ment User Guide and Reference Manual Version 1.4. Technical
report, University of Hamburg.

Bird, S. and M. Liberman, 1998. Towards a Formal Frame-
work for Linguistic Annotation. In Proceedings of the ICLSP,
Sydney.

Bird, S. and M. Liberman, 1999a. A Formal Framework
for Linguistic Annotation. Technical Report MS-CIS-99-
01, Department of Computer and Information Science,
University of Pennsylvania. http://xxx.lanl.gov/-

abs/cs.CL/9903003.
Bird, S. and M. Liberman, 1999b. Annotation graphs as a frame-

work for multidimensional linguistic data analysis. In Towards
Standards and Tools for Discourse Tagging, Proceedings of the
Workshop. ACL-99.

Bird, Steven, David Day, John Garofolo, John Henderson, Chris
Laprun, and Mark Liberman, 2000. ATLAS: A flexible and
extensible architecture for linguistic annotation. In Proceed-
ings of the Second International Conference on Language Re-
sources and Evaluation. Athens.

Boitet, C. and M. Seligman, 1994. The “Whiteboard” Architec-
ture: A Way to Integrate Heterogeneous Components of NLP
Systems. In Proceedings of COLING ’94. Kyoto, Japan.

Booch, G., 1994. Object-Oriented Analysis and Design 2nd
Edtn.. Benjamin/Cummings.

Bos, J., C.J. Rupp, B. Buschbeck-Wolf, and M. Dorna, 1998.
Managing information at linguistic interfaces. In Proceedings
of the 36th ACL and the 17th COLING (ACL-COLING ’98).
Montreal.

Brew, C., D. McKelvie, R. Tobin, H. Thompson, and A. Mikheev,
1999. The XML Library LT XML version 1.1 User document-
ation and reference guide. Edinburgh: Language Technology
Group. http://www.ltg.ed.ac.uk/.

Brugman, H., H.G. Russel, and P. Wittenburg, 1998. An infra-
structure for collaboratively building and using multimedia cor-
pora in the humaniora. In Proceedings of the ED-MEDIA/ED-
TELECOM Conference. Freiburg.

Buckley, C., 1998. TIPSTER Advanced Query (DN2). TIPSTER
programme working paper.

Busemann, S., 1999. Constraint-Based Techniques for Interfacing
Software Modules. In Proceedings of the AISB’99 Workshop
on Reference Architectures and Data Standards for NLP. Edin-
burgh, U.K.: The Society for the Study of Artificial Intelligence
and Simulation of Behaviour.

Cahill, L., C. Doran, R. Evans, C. Mellish, D. Paiva, M. Reape,
D. Scott, and N. Tipper, 1999a. Towards a Reference Archi-
tecture for Natural Language Generation Systems. Technical
Report ITRI-99-14; HCRC/TR-102, University of Edinburgh
and Information Technology Research Institute, Edinburgh and
Brighton.

Cahill, L. and M. Reape, 1998. Component Tasks
in Applied NLG Systems. RAGS deliverable,
http://www.tri.bbrighton.ac.uk/-

projects/rags/.
Cahill, L.J., C. Doran, R. Evans, D. Paiva, D. Scott, C. Mel-

lish, and M. Reape, 1999b. Achieving Theory-Neutrality in
Reference Architectures for NLP: To What Extent is it Pos-
sible/Desirable? In Proceedings of the AISB’99 Workshop on
Reference Architectures and Data Standards for NLP. Edin-
burgh, U.K.: The Society for the Study of Artificial Intelligence
and Simulation of Behaviour.

Cahoon, B. and K.S. McKinley, 1996. Performance Evaluation of
a Distributed Architecture for Information Retrieval. In Pro-
ceedings of SIGIR ’96. Zurich.

Cheong, T.L., A.W.L. Kwang, A. Gunawan, G.A. Loo, L.C.
Qwun, and S.H. Leng, 1994. A Pragmatic Information Extrac-
tion Architecture for the Message Formatting Export (MFE)



System. In Proceedings of the 2nd Singapore Conference on
Intelligent Systems (SPICIS ’94). Singapore.

Christ, O., 1994. A Modular and Flexible Architecture for
an Integrated Corpus Query System. In Proceedings of the
3rd Conference on Computational Lexicography and Text
Research (COMPLEX ’94). http://xxx.lanl.gov/-

abs/cs.CL/9408005.
Christ, O., 1995. Linking WordNet to a Corpus Query System.

In Proceedings of the Conference on Linguistic Databases.
Groningen.

Clarkson, P. and R. Rosenfeld, 1997. Statistical Language Mod-
eling using the SMU-Cambridge Toolkit. In Proceedings of
ESCA Eurospeech. Greece.

Clements, P.C. and L.M. Northrop, 1996. Software Architec-
ture: An Executive Overview. Technical Report CMU/SEI-96-
TR-003, Software Engineering Institute, Carnegie Mellon Uni-
versity.

Cockburn, A., 1997. Structuring Use Cases with Goals. Journal
of Object-Oriented Programming, Sept-Oct and Nov-Dec.

Connolly, D., 1997. XML: Principles, Tools and Techniques. Se-
bastopol, California: O’Reilly.

Cunningham, H., 1999. JAPE: a Java Annotation Patterns Engine.
Research Memorandum CS – 99 – 06, Department of Computer
Science, University of Sheffield.

Cunningham, H., R.G. Gaizauskas, K. Humphreys, and Y. Wilks,
1999. Experience with a Language Engineering Architecture:
Three Years of GATE. In Proceedings of the AISB’99 Work-
shop on Reference Architectures and Data Standards for NLP.
Edinburgh, U.K.: The Society for the Study of Artificial Intel-
ligence and Simulation of Behaviour.

Cunningham, H., R.G. Gaizauskas, and Y. Wilks, 1995. A Gen-
eral Architecture for Text Engineering (GATE) – a new ap-
proach to Language Engineering R&D. Technical Report CS –
95 – 21, Department of Computer Science, University of Shef-
field. http://xxx.lanl.gov/abs/cs.CL/9601009.

Cunningham, H., K. Humphreys, R. Gaizauskas, and Y. Wilks,
1996a. TIPSTER-Compatible Projects at Sheffield. In Ad-
vances in Text Processing, TIPSTER Program Phase II.
DARPA, Morgan Kaufmann, California.

Cunningham, H., K. Humphreys, R. Gaizauskas, and Y. Wilks,
1997a. GATE – a TIPSTER-based General Architecture
for Text Engineering. In Proceedings of the TIPSTER Text
Program (Phase III) 6 Month Workshop. DARPA, Morgan
Kaufmann, California.

Cunningham, H., K. Humphreys, R. Gaizauskas, and Y. Wilks,
1997b. Software Infrastructure for Natural Language
Processing. In Proceedings of the Fifth Conference
on Applied Natural Language Processing (ANLP-97).
http://xxx.lanl.gov/abs/cs.CL/9702005.

Cunningham, H., W. Peters, C. McCauley, K. Bontcheva, and
Y. Wilks, 1998a. A Level Playing Field for Language Resource
Evaluation. In Workshop on Distributing and Accessing Lex-
ical Resources at Conference on Language Resources Evalu-
ation, Granada, Spain.

Cunningham, H., M. Stevenson, and Y. Wilks, 1998b. Implement-
ing a Sense Tagger within a General Architecture for Language
Engineering. In Proceedings of the Third Conference on New
Methods in Language Engineering (NeMLaP-3). Sydney, Aus-
tralia.

Cunningham, H., Y. Wilks, and R. Gaizauskas, 1996b. GATE – a
General Architecture for Text Engineering. In Proceedings of
the 16th Conference on Computational Linguistics (COLING-
96). Copenhagen.

Cunningham, H., Y. Wilks, and R. Gaizauskas, 1996c. Software
Infrastructure for Language Engineering. In Proceedings of the
AISB Workshop on Language Engineering for Document Ana-
lysis and Recognition. Brighton, U.K.

Cunningham, H., Y. Wilks, and R.J. Gaizauskas, 1996d. New
Methods, Current Trends and Software Infrastructure for NLP.
In Proceedings of the Conference on New Methods in Natural
Language Processing (NeMLaP-2). Bilkent University, Turkey.
http://xxx.lanl.gov/abs/cs.CL/9607025.

Cunningham, Hamish, 2000. Software Architecture for Language
Engineering. Forthcoming.

Cutting, D., J. Pedersen, and P-K. Halvorsen, 1991. An Object-
Oriented Architecture for Text Retrieval. In Proceedings of
RIAO ’91. Barcelona.

Edmondson, W. and J. Iles, 1994a. A Non-linear Architecture for
Speech and Natural Language Processing. In Proceedings of
International Conference on Spoken Language Processing (IC-
SLP ’94), volume 1. Yokohama, Japan.

Edmondson, W. and J. Iles, 1994b. Pantome: An architecture for
speech and natural language processing. Paper distributed at
Dept. of CS Seminar, Sheffield University.

Eriksson, M., 1996. ALEP. http://www.sics.se/-

humle/projects/svensk/platforms.html.
Estival, D., A. Lavelli, K. Netter, and F. Pianesi (eds.), 1997.

Computational Environments for Grammar Development and
Linguistic Engineering. Association for Computational Lin-
guistics. Madrid, ACL-EACL’97.

Fikes, R. and A. Farquhar, 1999. Distributed Repositories of
Higly Expressive Reusable Ontologies. IEEE Intelligent Sys-
tems, 14(2):73–79.

Fischer, D., W. Mohr, and L. Rostek, 1996. A Modular, Object-
Oriented and Generic Approach for Building Terminology
Maintenance Systems. In TKE ’96: Terminology and Know-
ledge Engineering. Frankfurt.

Fowler, Martin and Kendall Scott, 1997. UML Distilled. Reading,
Massachusetts: Addison-Welsey.

Fowler, Martin and Kendall Scott, 2000. UML Distilled, Second
Edition. Reading, Massachusetts: Addison-Welsey.

Gaizauskas, R.G., H. Cunningham, Y. Wilks, P. Rodgers, and
K. Humphreys, 1996. GATE – an Environment to Support Re-
search and Development in Natural Language Engineering. In
Proceedings of the 8th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-96). Toulouse, France.

Goldfarb, C.F. and P. Prescod, 1998. The XML Handbook. Upper
Saddle River, NJ: Prentice Hall.

Goldfarb, Charles F., 1990. The SGML Handbook. Oxford Uni-
versity Press.

Goni, J.M., J.C. Gonzalez, and A. Moreno, 1997. ARIES: A lex-
ical platform for engineering Spanish processing tools. Journal
of Natural Language Engineering, 3(4):317–347.

Görz, G., M. Kessler, J. Spilker, and H. Weber, 1996. Research
on Architectures for Integrated Speech/Language Systems in
Verbmobil. In Proceedings of COLING-96, Copenhagen..

Grishman, R., 1997. TIPSTER Architecture Design
Document Version 2.3. Technical report, DARPA.
http://www.itl.nist.gov/div894/894.02/-

related projects/tipster/ .
Hayes-Roth, F., 1994. Architecture-Based Acquisition and Devel-

opment of Software: Guidelines and Recommendations from
the ARPA Domain-Specific Software Architecture (DSSA)
Program. Technical report, Techknowledge Federal Systems.
http://www.oswego.com/dssa/, visited 29th March
1999.



Hendler, J. and K. Stoffel, 1999. Back-End Technology for High-
Performance Knowledge Representation Systems. IEEE Intel-
ligent Systems, 14(3):63–69.

Hendry, D.G. and D.J. Harper, 1996. An Architecture for Im-
plementing Extensible Information-Seeking Environments. In
Proceedings of SIGIR-96..

Henrich, A., 1996. Document Retrieval Facilities for Repository-
Based System Development Environments. In Proceedings of
SIGIR ’96. Zurich.

Hobbs, J.R., 1993. The Generic Information Extraction
System. In Proceedings of the Fifth Message Understand-
ing Conference (MUC-5). Morgan Kaufmann, California.
http://www.itl.nist.gov/div894/894.02/-

related projects/tipster/gen ie.htm.
Ibrahim, M.H. and F.A. Cummins, 1989. TARO: An Interactive,

Object-Oriented Tool for Building Natural Language Systems.
In IEEE International Workshop on Tools for Artificial Intelli-
gence. Los Angeles.

Ide, N., 1998a. Corpus Encoding Standard: SGML Guidelines
for Encoding Linguistic Corpora. In Proceedings of the First
International Language Resources and Evaluation Conference.
Granada, Spain.

Ide, N., 1998b. Encoding Linguistic Corpora. In Proceedings of
the Sixth Workshop on Very Large Corpora. Montreal.

Ide, N. and G. Priest-Dorman, 1999. Corpus Encoding Standard.
http://www.cs.vassar.edu/CES/.

Isard, A., D. McKelvie, and H.S. Thompson, 1998. Towards a
Minimal Standard for Dialogue Transcripts: A New Sgml Ar-
chitecture for the HCRC Map Task Corpus. In Proceedings
of the 5th International Conference on Spoken Language Pro-
cessing (ICSLP ’98). Sydney.

Jing, H. and K. McKeown, 1998. Combining Multiple, Large-
Scale Resources in a Reusable Lexicon for Natural Language
Generation. In Proceedings of the 36th ACL and the 17th COL-
ING (ACL-COLING ’98). Montreal.

Johnson, J.A. and R.S. Rosenberg, 1995. A Data Management
Strategy for Transportable Natural Language Interfaces. Inter-
national Journal of Intelligent Systems, 10(9):771–808.

Koning, J.L., M.H. Stefanini, and Yves Deamzeau, 1995. DAI
Interaction Protocols as Control Strategies in a Natural Lan-
guage Processing System. In Proceedings of IEEE Conference
on Systems, Man and Cybernetics.

Li, L., D.A. Dahl, L.M. Norton, M.C. Linebarger, and D. Chen,
1998. A Test Environment for Natural Language Understand-
ing Systems. In Proceedings of the 36th ACL and the 17th
COLING (ACL-COLING ’98). Montreal.

LREC-1, 1998. Conference on Language Resources Evaluation
(LREC-1). Granada, Spain.

LuperFoy, S., D. Loehr, D. Duff, K. Miller, F. Reeder, and
L. Harper, 1998. An Architecture for Dialogue Management,
Context Tracking, and Pragmatic Adaptation in Spoken Dia-
logue Systems. In Proceedings of the 36th ACL and the 17th
COLING (ACL-COLING ’98). Montreal.

Mason, O., 1998. The CUE Corpus Access Tool. In Workshop
on Distributing and Accessing Linguistic Resources. Granada.
http://www.dcs.shef.ac.uk/˜hamish/dalr/.

McKelvie, D., C. Brew, and H. Thompson, 1997. Using SGML
as a Basis for Data-Intensive NLP. In Proceedings of the fifth
Conference on Applied Natural Language Processing (ANLP-
97). Washington, DC.

McKelvie, D., C. Brew, and H.S. Thompson, 1998. Using SGML
as a Basis for Data-Intensive Natural Language Processing.
Computers and the Humanities, 31(5):367–388.

Mikheev, A. and S. Finch, Washington, DC, 1997. A Workbench
for Finding Structure in Text. In Fifth Conference on Applied
NLP (ANLP-97).

Nelson, T., 1997. Embedded Markup Considered Harmful. In
D. Connolly (ed.), XML: Principles, Tools and Techniques.
O’Reilly, pages 129–134.

Netter, K. and F. Pianesi, 1997. Preface. In Proceedings of the
Workshop on Computational Environments for Grammar De-
velopment and Linguistic Engineering. Madrid.

Olson, M.R. and B.S. Lee, 1997. Object Databases for SGML
Document Management. In IEEE International Conference on
Systems Sciences.

Paggio, P., 1998. Validating the TEMAA LE evalutation method-
ology: a case study on Danish spelling checkers. Journal of
Natural Language Engineering, 4(3):211–228.

Paiva, D.S., 1998. A Survey of Applied Natural Language Gen-
eration Systems. Technical Report ITRI-98-03, Information
Technology Research Institute, Brighton.

Peters, W., H. Cunningham, C. McCauley, K. Bontcheva, and
Y. Wilks, 1998. Uniform Language Resource Access and Dis-
tribution. In Workshop on Distributing and Accessing Lexical
Resources at Conference on Language Resources Evaluation,
Granada, Spain.

Poirier, H., 1999. The XeLDA Framework (present-
ation at Baslow workshop on Distributing and Ac-
cessing Linguistic Resources, Sheffield, 1999).
http://www.dcs.shef.ac.uk/˜hamish/dalr/-

baslow/xelda.pdf.
Rao, R., H.D. Jellinek S.K. Card, J.D. Mackinlay, and G.G.

Robertson, 1992. The Information Grid: a Framework for In-
formation Retrieval and Retrieval-Centered Applications. In
Proceedings of the fifth annual ACM symposium on User in-
terface software and technology (UIST ’92). Monterey, CA.

Reiter, E., 1994. Has a Consensus NL Generation Ar-
chitecture Appeared, and is it Psycholinguistically Plaus-
ible? In Proceedings of the Seventh International Work-
shop on Natural Language Generation (INLGW-1994).
http://xxx.lanl.gov/abs/CS.cl/9411032.

Reiter, E., 1999. Are Reference Architectures Standardisation
Tools or Descripticve Aids? In Proceedings of the AISB’99
Workshop on Reference Architectures and Data Standards for
NLP. Edinburgh, U.K.: The Society for the Study of Artificial
Intelligence and Simulation of Behaviour.

Reiter, E. and R. Dale, 1999. Building Natural Language Genera-
tion Systems. Journal of Natural Language Engineering, Vol.
3 Part 1.

Reiter, E. and R. Dale, 2000. Building Natural Language Gener-
ation Systems. Cambridge, U.K.: Cambridge University Press.

Schutz, J., G. Thurmair, and R. Cencioni, 1991. An Architecture
Sketch of Eurotra-II. In MT Summit III. Washington D.C.

Simkins, N. K., 1992. ALEP User Guide. CEC Luxemburg.
Simkins, N. K., 1994. An Open Architecture for Language Engin-

eering. In First CEC Language Engineering Convention, Paris.
Sparck-Jones, K. and J. Galliers, 1996. Evaluating Natural Lan-

guage Processing Systems. Springer.

Sperberg-McQueen, C.M. and L. Burnard, 1994. Guidelines
for Electronic Text Encoding and Interchange (TEI P3).
ACH, ACL, ALLC. http://etext.virginia.edu/-

TEI.html.
Stefanini, M.H. and Yves Deamzeau, 1995. TALISMAN: a multi-

agent system for Natural Language Processing. In Proceedings
of IEEE Conference on Advances in Artificial Intelligence, 12th
Brazilian Symposium on AI.



Thurmair, G., 1996. WP 4.1 Task S6: Text Handling, Detailed
Functional Specifications. Technical Report WP41-S6-V1.1,
Sail Labs Gmbh., Munich. LE project LE1-2238 AVENTINUS
internal report.

TIPSTER, 1995. The Generic Document Detection System.
http://www.itl.nist.gov/div894/894.02/-

related projects/tipster/gen ir.htm.
Tracz, W., 1995. Domain-Specific Software Architec-

ture (DSSA) Frequently Asked Questions (FAQ).
http://www.oswego.com/dssa/faq/faq.html,
visited 29th March 1999.

University of Essex, 1999. Description of the W3-Corpora web-
site. http://clwww.essex.ac.uk/w3c/.

von Hahn, W., 1994. The Architecture Problem in Natural Lan-
guage Processing. Prague Bulletin of Mathematical Linguist-
ics, 61:48–69.

Wolinski, F., F. Vichot, and O. Gremont, 1998. Produ-
cing NLP-based On-line Contentware. In Natural Lan-
guage and Industrial Applications. Moncton, Canada.
http://xxx.lanl.gov/abs/cs.CL/9809021.

Young, S., D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland, 1999. The HTK
Book (Version 2.2). Cambridge, UK: Entropic Ltd.
ftp://ftp.entropic.com/pub/htk/.

Yourdon, E., 1989. Modern Structured Analysis. Prentice Hall,
New York.

Yourdon, E., 1996. The Rise and Resurrection of the American
Programmer. Prentice Hall, New York.

Zajac, R., 1992. Towards Computer-Aided Linguistic Engineer-
ing. In Proceedings of COLING ’92. Nantes, France.

Zajac, R., 1998a. Feature Structures, Unification and Finite-State
Transducers. In International Workshop on Finite State Meth-
ods in Natural Language Processing. Ankara, Turkey.

Zajac, R., 1998b. Reuse and Integration of NLP Com-
ponents in the Calypso Architecture. In Workshop on
Distributing and Accessing Linguistic Resources. Granada.
http://www.dcs.shef.ac.uk/˜hamish/dalr/.


