
PoS Disambiguation and Partial Parsing Bidirectional Interaction

Montserrat Marimon Felipe � Jordi Porta Zamoranoz

�Grup d’Investigació en Lingüística Computacional
Universitat de Barcelona

montse@gilcub.es

zDepartamento de Lingüística Computacional
Real Academia Española

porta@rae.es

Abstract
This paper presentsLatch; a system for PoS disambiguation and partial parsing that has been developed for Spanish. In this system,
chunks can be recognized and can be referred to like ordinary words in the disambiguation process. This way, sentences are simplified
so that the disambiguator can operate interpreting a chunk as a word and chunk head information as a word analysis. This interaction
of PoS disambiguation and partial parsing reduces the effort needed for writing rules considerably. Furthermore, the methodology we
propose improves both efficiency and results.

1. Introduction
Rule-based part of speech (PoS) tagging aims at disam-

biguating texts –choosing the appropriate tag for each lex-
ical item– looking at the sentential context. Distributional
generalizations are implemented by a set of constraint rules
promoting and/or discarding analyses.

This linguistic approach thus requires a high effort for
writing an exhaustive grammar to deal with ambiguities
which, quite often, go beyond the definition of morphosyn-
tax. Ambiguities within a lexicon encoding morphosyn-
tactic information are mainly due to homonomy and mul-
tiple functions of affixes. Morphosyntactic corpus annota-
tion (PoS tagging) is the first application of such a lexicon,
which, in turn, usually constitutes a prerequisite for further
(and more complex) types of analyses (e.g., syntactic, se-
mantic annotation). Lexical entries are frequently encoded
taking them into account, which results in an increase of
the number of ambiguities due to semantic and/or syntactic
distinctions which are not marked by any feature.

In addition, a lineal distributional generalization does
not always provide with enough information for effective
disambiguation. Phenomena like non-local agreement and
discontinuity are difficult to express without information
about constituency structure and head information.

The system we present here –Latch1– marks chunks
and uses that information for PoS disambiguation. Chunks
(possible formed by ambiguous word sequences) can be
recognized by the system and can be referred to like or-
dinary words in the disambiguation process. This way, sen-
tences are simplified so that the disambiguator can operate
interpreting a chunk as a word and chunk head informa-
tion as a word analysis. This interaction of PoS disam-
biguation and partial parsing reduces the effort needed for
writing rules considerably. We need less and simpler rules.
Furthermore, the methodology we propose improves both
efficiency and results.

We will first present theLatch formalism, and we will

1Linguistic Annotator Tagger and Chunker.

see how we make use of a mechanism for macro processing
and a literate programming writing style to increase the ex-
pressivity and abstraction of the rule system. Then, we will
present our grammar rules, having been built up as a set
of modular components defined along such criteria as effi-
ciency and reliability degree. Here we will see how gram-
mar development may be improved by using chunks.

2. TheLatch Formalism
Latch is a lean formalism for rule-based disambigua-

tion and chunking. Rules take the following syntactic
form2:

hrulei ::= @TOK hrule namei

hleft contexti�htpivotinhright contexti�

[%hscorein]

j @hchunk typei hrule namei

hleft contexti�hcpivotinhright contexti�

where:

� hrule namei is the rule identifier, which is displayed
when the tracing facility is enabled.3.

� htpivotin is a non-empty sequence of elements (n >

0) which specifies the lexical elements to be disam-
biguated by the rule. Its syntax is:

htpivoti ::= <[hguardi ->] hpatterni>

In its simpler form,hpatterni is a tuple ofhfull-formi,
hlemmai andhMSDi4 which uses regular expressions5

2As usually:[] denotes optionality;hsymi marks non-terminal
symbols;n, + and� are repetition operators;j separate alternative
expressions; and other symbols are terminals.

3Therefore, the choice of mnemonic names is strongly recom-
mended.

4Morphosyntactic description.
5Regular expressions are implemented with the GNUregex

library.

for each of the three elements where omission is in-
terpreted as a regular expression.*. Rules may thus
refer to words, expressing lexical preferences, and/or
morphosyntactic analyses, where underspecification is
expressed by relaxing regular expressions.

(1) @TOK Para_Default_NegAdj
< @para@Afp.* >
% -1

In its general form,patterns can be formed using the
logic connectives&& (and),|| (or), and!! (not), as
expressed in the following grammar:

hpatterni ::= hfull-formi@hlemmai@hMSDi

j hpatterni && hpatterni

j hpatterni || hpatterni

j !!hpatterni

One of the main features ofLatch is that it allows the
grammar developer to specify a precondition –what
we call hguardi– to the lexical element the rule is re-
ferred to. In this way, analyses are promoted/rejected
not only on the basis of their contextual conditions, but
also taking into account such further constraints.

Such a precondition is expressed by means of
universally (&{hpatterni}&) or existentially
(#{hpatterni}#) quantified patterns, which, in
turn, may be combined using the logic connectives
&& (and),|| (or) and!! (not).

helementi ::= &{hpatterni}&

j #{hpatterni}#

j helementi && helementi

j helementi || helementi

j !!helementi

These elements appearing in thehguardi6 allows us to
define concepts like ‘class’7, to define an ambiguity
class, which will constrain the analysis/analyses to be
promoted/rejected by the rule, as we exemplify in (2):

(2) < #{@@N.*}# && #{@@A.*}# &&
!!#{!!@@N.* && !!@@A.*}#
-> @@N.* >

In addition, we may also define the concept (ambigu-
ity) ‘superclass’8 in order to deal with any ambiguity
type which is subsumed by the specified ambiguity,
which we exemplify in (3):

(3) <#{@@N.*}# && #{@@A.*}# -> @@N.*>

During the development of a grammar it is important
to provide with means to reason about the meaning

6As well as in the contextual conditions, as we will see below.
7#{A}# && #{B}# && !!#{!!A && !!B}#: analy-

ses match eitherA orB. It covers the ambiguityAjB.
8#{A}# && #{B}#: there is an analysis matchingA orB.

It covers the ambiguitiesAjB,AjBjC, . . .

of a rule, when intuitive interpretation of a rule is not
clear. TheLatch formalism has been designed to al-
low syntactical translation from rules to predicate cal-
culus. In (4) and (5) we show how theguard in (2) and
(3) is expressed and translated into predicate calculus.

(4) 9x Noun(x) ^ 9y Adj(y)
^:9z (:Noun(z)^:Adj(z))

(5) 9x Noun(x) ^ 9y Adj(y)

As we will see in section 4.3., logical equivalence pro-
vides clues to express such constraints in a computa-
tionally efficient way.

� hchunk typei can beVCHUNK (volatile chunks) or
PCHUNK (persistent chunks) for chunk rules.

� hcpivotin is a non-empty sequence of element con-
straints (n > 0) which are grouped into an opaque
element.

Latch allows the grammar developer to specify a head
element, which must be unique, by marking it with
<<_>>. The production rule forhcpivoti is:

hcpivoti ::= <helementi>

j <<helementi>>

Head descriptions are then projected to the chunk el-
ement so that they can be used by the disambiguation
rules both at the rule pivot to disambiguate the head of
the chunk, and at the context conditions.

The concepts ‘class’ and ‘superclass’ may also be used
to define chunks that will include ambiguous lexical
items. Besides, we may also use the concept of ‘sub-
class’9 to refer to analyses which are either unambigu-
ous or ambiguous between them. We exemplify in (6),
and in (7) we present how it is expressed and translated
into predicate calculus:

(6) <&{@@N.* || @@A.*}&>

(7) 8a (Noun(a)_Adj(a))

The following is an example of the pivot of a chunk
rule building a nominal chunk10.

(8) <#{@@T.mp}# && !!#{!!@@T.mp}#>
<&{@@Afpmp || @@Vmp..pm}&>
<<#{@@N.mp}# && !!#{!!@@N.mp}#>>

� The context conditions are placed to the left and/or
to the right of the rule pivot, indicating the elements
preceding and/or following the readings to be disam-
biguated as well as the elements to be grouped. There
is no limit to the number of contextual elements nor

9&{A jj B}&: analyses match eitherA, B or A andB. It
covers:A,B,AjB.

10Covering ‘articles + premodifying adjectives or participles
(possibly ambiguous between them) + unambiguous nouns’; e.g.,
un/el detallado informe (the/a detailed report).

to the position they occur with respect to the pivot el-
ement. Constraints can go beyond neighbouring to-
kens. Our rules can have one of the following context
expressions:

hleft contexti ::= helementi <

j helementi <<

j helementi ! helementi <

– The immediate context operator (<) states that
there is an adjacent element that satisfies the ele-
ment constraint.

– Theunbounded context operator (<<) expresses
that there is an element somewhere to the left that
satisfies the element constraint.

– The constrained unbounded context operator
(!<) expresses that there is an element some-
where to the left that satisfies the context condi-
tion but all elements between boundaries satisfy
a constraint.

Similarly,>, >> and>! are defined for right contexts.

Constraint sequences are possible by concatenating
context expressions by means of this relative ordering
operators, but note that in “C1 < C2 << C3 << C4”
backtracking is required in order to search for possi-
ble anchoring contexts.

As within the pivot, the concepts of ‘class’, ‘subclass’
and ‘superclass’ may be used to refer to ambiguous
contextual elements.

� The last component of lexical rules ishscorein; an
optional sequence of positive or negative scores the
grammar developer assigns to a rule in order to pro-
mote or to reject the (possibly preconditioned) analy-
ses specified by pivots on the basis of the contextual
elements. The default value is ‘+1’ when no score is
provided to a rule.

In this voting constraint (Oflazer and Tür, 1997) sys-
tem, in order to avoid undesirable interference be-
tween rules we give higher votes to rules that are more
specific; i.e., rules that make reference to specific am-
biguity classes or to specific lexical items (lemma or
full-form).

3. Evaluation Mechanism
Rules operate within anSGML element (the default be-

ing the sentenceSGML tags<S>. . .</S>).
The evaluator operates by cycles of two phases: dis-

ambiguation and chunk construction. During the first one,
the evaluator tries to anchor rule pivots and, if context con-
straints are satisfied, scores are added to the pivots. Given
a threshold based on the maximum score reached by some
analyses, analyses scored below that are eliminated. The
process of chunk construction is a recursive process so
chunks can be built up by other chunks. Volatile chunks
can be used for other chunk construction, but they are elim-
inated at the end of this phase and only persistent chunks
survive.

The process can iterate once, or cycle until rules have
no effect on text.

4. Increasing the Formalism Expressivity
4.1. Macros

As we have seen,Latch is a lean formalism where
linguistic analyses are patterns that can be universally
(&{pattern}&) or existentially (#{pattern}#) quantified.
In order to increase the expressivity and the abstraction of
rules,Latch is provided with a mechanism for macro pro-
cessing:m4.

At a first level of abstraction, let’s call itvocabulary
abstraction, macro definitions may be used to make the
rules independent from the tagset one may be using, which,
in addition, frequently increases their readability. Here,
Latch tags can be defined as fine grained as desired, also
simulating underspecification:

(9) define(‘NOUN’,‘Nc.*|Np.*’)
define(‘NOUN_SG’,‘N..s*’)

Using the same rules by another tagset would just require
updating the macro definitions.

It is also important at this level of abstraction the use
of macros to mark some syntactic and/or semantic distinc-
tions which, going beyond the definition of morphosyntax,
have not been encoded in the lexicon one might be using
but which may have a relevant role in disambiguation. Ex-
amples below include the marking of degree adverbs and
control and raising verbs:

(10) define(‘DEG_ADV’,‘más|menos|muy|...’)
define(‘V_Ovp’,‘deber|aconsejar|...’)

Note that, by recursive macro expansion, hierarchical
abstractions can be expressed in a very simple way:

(11) define(‘V_Ovp’,‘V_RAIS|V_CTRL|...’)
define(‘V_RAIS’,‘deber|...’)
define(‘V_CTRL’,‘aconsejar|...’)

At this abstraction level, we may also have parameter-
ized macros. Examples of this type of macros are the ones
we have implemented to deal with the concepts of ‘class’.
‘subclass’ and ‘superclass’ we saw in section 2:

(12) a.class(elem1; : : : ; elemn)
b. subclass(elem1; : : : ; elemn)
c. superclass(elem1; : : : ; elemn)

Examples (2), (3) and (8) we presented in section 2 will be
obtained by macro expansion of:

(13) <class(@@NOUN,@@ADJ)->@@NOUN>
<superclass(@@NOUN,@@ADJ)->@@NOUN>
<subclass(@@NOUN,@@ADJ)>

Parameterized macros, in addition, allow us to collect
some sequences of contextual elements. Let’s call this type
structural abstraction. Examples of this type of macros are
the ones we have defined for subcategorization. Let’s see
the one for ditransitive verbs; i.e., taking a direct object
(DO) and an indirect object (IO)

(14) a.define(‘subcat’,‘$1 > $2’)
b. subcat(DO,IO)

If we define macros for DO and IO:

(15) define(‘DO’,‘class(@@NOUN)’)
define(‘IO’,‘class(@a@PREP)

> class(@@NOUN)’)

the final expansion of (14 b.) in a rule like (16) will be (17):

(16) @TOK AdjVerb_PreNPPP_Verb
<class(@@ADJ,@@VERB->@@VERB.>
> subcat(DO,IO)
% 1

(17) @TOK AdjVerb_PreNPPP_Verb
<#{@@A.*}# && #{@@V.*}# &&
!!#{!!@@A.* && !!@@V.*}#->@@V.*>

> #{@@N.*}# && !!#{!!@@N.*}#
> #{@a@Sp}# && !!#{!!@a@Sp}#
> #{@@N.*}# && !!#{!!@@N.*}#
% 1

Finally, we have therule abstraction level where we de-
fine what we called schemata. An schema has the following
syntax:

schema(expression, var, val1, . . . ,valn)

It duplicatesexpression n times, replacingvar with vali

at iterationith.
This can be used to simulate unification in order to re-

duce the number of rules to be implemented dealing, for ex-
ample, with agreement (18) and subcategorization patterns
(19):

(18) schema(
@TOK ArtClit_PreNounAgr_DetAgr
<class(@@TdAgr.,@@CLIT->@@TdAgr.>
> class(@@N.Agr.)
% 1,

Agr, fs, fp, ms, mp)

(19) schema(
@TOK AdjVerb_Preprep_Verb
class(BOS@@) <
<class(@@ADJ,@@VERB->@@VERB>
> subcat(PP(Prep))
> class(EOS)
% 1,

Prep, a, hacia)

define(‘PP’,‘> class(@$1@PREP)
> class(@@NOUN)’)

which are expanded into (20) and (21) respectively:

(20) a. @TOK ArtClit_PreNounfs_Detfs
<class(@@Tdfs.,@@CLIT->@@Tdfs.>
> class(@@N.fs.)+
% 1

b. @TOK ArtClit_PreNounfp_Detfp
<class(@@Tdfp.,@@CLIT->@@Tdfp.>
> class(@@N.fp.)
% 1

c. @TOK ArtClit_PreNounms_Detms
<class(@@Tdms.,@@CLIT->@@Tdms.>
> class(@@N.ms.)
% 1

d. @TOK ArtClit_PreNounmp_Detmp
<class(@@Tdmp.,@@CLIT->@@Tdmp.>
> class(@@N.mp.)
% 1

(21) a. @TOK AdjVerbLc_Prea_Verb
class(BOS@@) <
<class(@@ADJ,@@VERB->@@VERB>
> class(@a@PREP)
> class(@@NOUN)
> class(EOS@@)
% 1

b. @TOK AdjVerb_Prehacia_Verb
class(BOS@@) <
<class(@@ADJ,@@VERB->@@VERB>
> class(@hacia@PREP)
> class(@@NOUN)
> class(EOS@@)
% 1

4.2. Literate Programming

Grammar rules have been implemented in a literate pro-
gramming system, namelynoweb. Briefly, literate pro-
gramming, invented by Donald Knuth (Knuth, 1984), is a
philosophy for writing programs where (i)- you get to write
the code in any order you want, independently of the or-
der it will be executed; and (ii)- code and documentation
can be intermingled. Thus, in the grammar we will present,
sections correspond to the different ambiguity classes we
found. There, rules are classified according to the different
criteria we will present.

4.3. About Rule Coding Style and Efficiency

We will now see how quantified element definitions
may be optimized, strongly recommended for those ones
frequently used along the grammar.

One of the patterns more frequently used is ‘class’. The
macro ‘class’ generates code of this kind “#{A1}# &&
. . .&& #{An}# && !!#{!!A1 && . . .&& !!A1 }#” when
called with argumentsA1, . . . ,An. But there is a particu-
lar very frequent case when the macro is called with just
one argument. The optimal expansion of the macro in this
case is “&{A}&” because the following sequence of logical
equivalences holds:

9x A(x) ^ :9x :A(x)

� 9x A(x) ^ 8x A(x)

� 8x A(x)

This optimization is carried out during the macro expan-
sion since the macro takes into account the number of argu-
ments.

Another example is the disjunction of existentially
quantified elements. For instance, «#{@@A}# ||
#{@@B}#» could be rewritten as «#{@@AjB}#». Since

the disjunction of contexts in the former is equivalent to the
disjunction of regular expressions in the latter.

Another kind of optimization is done to the implementa-
tion. Based on the observation that, due to the laws of sum,
lexical rules can be applied in any order, a multi-threaded
version of the code has been implemented for parallel rule
application. This results in a better performance on multi-
processor systems.

5. Grammar Definition
Our main goal was to implement a grammar which, on

the one hand, could be easily and efficiently adapted to deal
with different input text, and, on the other hand, it should
also allow us to sacrifice its recall when an increase of its
precision was preferable11. Taking this into account, we de-
fined our grammar as a set of modular components –defined
along different criteria– to be activated (or deactivated) de-
pending both on the type of input text and on the applica-
tion. Our first task here was to make an exhaustive study of
the ambiguities we found in our lexicon, then, rules were
defined accordingly on the basis on such criteria as effi-
ciency and reliability degree which constitute the different
modules of our grammars and which we present in the fol-
lowing subsections.

5.1. Disambiguation Constraint Rules

1. We distinguished a first set of rules which are applied
to specific lexical forms, (most of them) independently
of the context in which they occur, to eliminate very
rare readings. Examples are the ambiguity ofa andde
between ‘noun/preposition’.

2. Our second subgrammar contains a very small set of
rules which either remove readings that are always il-
legitimate in a given context (e.g., verbal reading fol-
lowing unambiguous determiners) or promote read-
ings in context where no other reading is appropriate
(e.g., verbs following unambiguous clitics). These are
very simple and efficient rules where: (i)- contexts are
limited to one element either preceding or following
the rule pivot; (ii)- rule pivots are referred to cate-
gories rather than subtypes or lexical instantiation of
such categories; and, (iii)- no precondition is specified
in the focus of the rule, meaning that they apply what-
ever their lexical instantiation is.

3. Then, we have a set of rules which disambiguate on
the basis of agreement within phrases. They eliminate
(nominal, adjectival, participle and pronominal) read-
ings which do not agree either in gender or in number
with the tokens immediately preceding and/or follow-
ing them.

11The terms recall and precision, originally proposed by the
developers of theENGCC system (Karlsson et al., 1995), are
broadly used in rule-based PoS tagging to evaluate the resulting
disambiguated text. A recall of 100% means that all tokens have
received the appropriate analysis; a precision of 100% means that
there is no superfluous reading. When recall and precision are
the same, then this value is called accuracy –which happens when
all tokens received just one analysis (as happens when statistical
methods are applied).

4. Our fourth subgrammar is the biggest one. While in
the previous set of rules we implemented very simple
distributional generalizations dealing with a few cate-
gories, this is an exhaustive grammar dealing with all
ambiguity types we found in our lexicon. Here we dis-
tinguished two subtypes of rules.
The first group of rules deals with the ambiguities
between open class lexical items: adjectives, nouns
and verbs. Even though we wanted to avoid as much
as possible redundant constraints, since that clearly
affected the performance of the grammar, our main
goal was to ensure the reliability of the constraints.
Here, the notion of (ambiguity) class played a cru-
cial role, all rule pivots were specified w.r.t. the am-
biguity we wanted to resolve. This strategy, in ad-
dition, allowed us to leave apart the disambiguation
of ‘adjective/participle’ and ‘adjective/noun’ ambigu-
ities, which need semantic, or, even, pragmatic in-
formation to be reliably solved. Within this group
contextual constraints are not limited to a single ele-
ment, but may include up to three or four elements,
basically, establishing the distributional requirement
within phrases.
Our second group deals with both the ambiguities be-
tween close classes and the ambiguity types we clas-
sified as ‘special lexical items’, covering ambigui-
ties between open and close classes, which though
they are not very numerous, they contain many of
the most frequent words. To deal with them, we fol-
lowed two different strategies. Where possible we em-
ployed the notion of superclass to reduce the num-
ber of rules. This, however, was only possible when
no many ambiguity classes could be subsumed by
the precondition. But the biggest set of ambigui-
ties were dealt with contextual rules where the focus
made reference to specific lexical items. This strat-
egy was partly motivated by the fact that the appli-
cation of constraint rules coded in the previous sub-
grammars added new ambiguity types to our origi-
nal typology. Let’s see an example. In the set of
rules defined in the second subgrammar, we included a
contextual constraint eliminating the determiner read-
ing following another determiner or an article. If
such a rule applies, the ambiguities coming from the
lexicon between ‘indefinite pronoun/indefinite adjec-
tive/indefinite determine/adverb’ is reduced to ‘indef-
inite pronoun/indefinite adjective/adverb’, an ambi-
guity we did not have before in our lexicon. Deal-
ing with so many special ambiguity classes by means
of rules specifying an ambiguity class or superclass
would have required adding too many rules to deal
with the new classes. Besides, even when the result-
ing ambiguity coincided with one already present in
the lexicon, this was not a "real" ambiguity case, so
we could not deal with them the same way.

5.2. Chunk Rules: PoS Disambiguation and Partial
Parsing Bidirectional Interaction

Our next step was to increase the distributional general-
izations and to disambiguate on the basis of the order con-

straints –or requirements– of sentential constituents. For
this, we developed and integrated into the system a partial
parser that built up ‘chunks’. Our main goal was twofold.
On the one hand, we aimed at interpreting a chunk as a lex-
ical items and head information as a word analysis, both
when appearing at the contextual conditions and the rules
focus; on the other hand, to avoid rule diversification to deal
with all possible phrasal elements.

5. Thus, the fifth subgrammar includes both the rules
building chunks and the disambiguation constraints
rules referring to them.

Basically, our notion of chunks follows very closely
Abney’s proposal (Abney, 1996). In this way, chunks
represent intra-clausal constituents which are defined
on purely syntactic basis, rather than semantically
or lexically. Chunks are thus defined along catego-
rial dimension, extending from any premodifying –or
specifying– element up to the head element. However,
we differ from Abney’s in that we do not only rec-
ognize and mark what he namesmaximal chunks but
we also mark those chunks which may be contained
within another one, as for example adjectival phrases
preceding the nominal head (22)

(22) [NX mi [AX mejor] amiga]
my best friend

Been this mainly motivated to make the task of chunk
definition simpler and to ease its maintenance and up-
dating. With one simple rule where prenominal ad-
jectives are included within the nominal chunks, we
deal not only with adjectival chunks having a unique
element, the head element, but also with modified and
coordinated adjectives (23)

(23) a. mucho más importante
much more important

b. pequeñas y medianas empresas
small and medium companies

Note that, by specifying contextual conditions we
build up chunks which are part of another chunk,
which otherwise we would rather do not build, as for
example the one for coordinated element. Finally, the
notions of ‘class’, ‘subclass’ and ‘superclass’ may also
be used –and useful– in the chunk building process in
order to include ambiguous items within them.

Let’s now move to the disambiguation rules included
in this module. The strategy we have followed here is
similar to that of the previous one. Specific rules have
been developed to deal with the different ambiguity
classes by making use of the class and superclass con-
cepts. The main innovation of this set of rules is that
distributional constraints may refer to –or may be re-
stricted to, when necessary– chunks. Such constraints
appear at the rule pivot when we define rules to disam-
biguate the head element of a chunk, and at the con-
textual elements. Contextual constraints can thus go
beyond constituents in a very simple, efficient and re-
liable way. One rule is enough to refer to whatever
elements it includes.

6. Our first module groups together those rules that have
been heuristically defined.

6. Future Work
In this paper we have presented a system which inte-

grates partial parsing into PoS tagging. Even though we
are still at the development phase, the first results look very
promising. Future work will be concentrated on extending
the rules and to test our system on a larger corpus than the
one we have used so far (of about 20,000 words).

Our final goal is to integrate our system into a deep
grammar in order to reduce the non-determinism of the high
level processing.

7. References
Abney, Steven, 1996. Chunk style-

book. Work in progress. Available at:
http://sfs.nphil.uni-tuebingen.de/
~abney/Papers.html#96i.

Karlsson, F., A. Voutilainen, J. Heikkilä, and
A. Anttila (eds.), 1995. Constraint Grammar: A
Language-Independent System for Parsing Unrestricted
Text. Berlin and New York: Mouton de Gruyter.

Knuth, Donald E., 1984. Literate programming.The Com-
puter Journal, 27(2):97–111.

Oflazer, K. and G. Tür, 1997. Morphological disam-
biguation by voting constraints. InProceedings of the
35th Annual Meeting of the Association for Computa-
tional Linguistics and 8th Conference of the European
Chapter of the Association for Computational Lin-
guistics (ACL/EACL’97). Madrid, Spain. Available at:
http://xxx.lanl.gov/abs/cmp-lg/9704011.

