
The MATE workbench annotation tool, a technical description

Amy Isard�, David McKelvie�, Andreas Mengely, Morten Baun Møllerz

�HCRC Language Technology Group
Division of Informatics, University of Edinburgh

famyi, dmckg@cogsci.ed.ac.uk

yInstitut für Maschinelle Sprachverarbeitung
Universität Stuttgart

mengel@ims.uni-stuttgart.de

zNatural Interactive Systems Laboratory, Odense University
baun@mip.sdu.dk

Abstract
The MATE workbench is a tool which aims to simplify the tasks of annotating, displaying and querying speech or text corpora. It is
designed to help humans create language resources, and to make it easier for different groups to use one another’s data, by providing one
tool which can be used with many different annotation schemes. Any annotation scheme which can be converted to XML can be used
with the workbench, and display formats optimised for particular annotation tasks are created using a transformation language similar to
XSLT. The workbench is written entirely in Java, which means that it is platform-independent.

1. Introduction

The MATE workbench provides a general framework
for defining specialised annotation editors, and makes the
writing of an editor tool for a particular annotation scheme
and particular annotation task relatively easy. This gen-
erality is provided by allowing the use of any annotation
schema coded in XML (Bray et al., 1998; Goldfarb and
Prescod, 1998) and by allowing the corpus designer to write
rule based transformations using a language very similar to
Extensible Stylesheet Language Transformations (XSLT)
(Clark, 1999) which describe how the corpus is presented
to the annotator and what editing actions are available. The
workbench provides a number of pre-defined stylesheets
for use with particular annotation schemes, but its major
strength is that it is possible to write new stylesheets for
existing or new schemes. There are many existing tools
which offer support for annotation, querying and/or display
of speech corpora, and an extensive list of these, with links,
can be found at the Linguistic Data Consortium’s Linguis-
tic Annotation web site (Bird and Liberman, 2000). These
tools have been created for many different and sometimes
very specific purposes, and the MATE workbench does not
aim to replace them all, but to offer a way of creating
specific interfaces more easily in future, and to provide a
framework which makes it possible to work with many dif-
ferent annotation schemes which are written in a common
format.

The MATE workbench draws on several existing
strands of work to provide a generic annotation tool which
supports non-hierarchical markup (particularly necessary
for speech due to overlapping annotation schemes and mul-
tiple overlapping speakers). The idea of using XML as a
annotation standard for natural language processing goes
back to the work of the Text Encoding Initiative (Ide and
Véronis, 1995), and the idea of using a database as a
central resource for natural language processing was de-

veloped by the GATE project (Cunningham et al., 1996).
Data models related to XML and associated query lan-
guages were developed by a number of groups including the
Lore project (Goldman et al., 1999) and SgmlQL (LeMaitre
et al., 1996), and the idea of document transformation using
structurally recursive rules comes originally from the work
of the DSSSL (Adler, 1997) standard and XSLT working
group. Stylesheet transformation languages have so far
largely been used to produce static documents, but in this
project we extend this to create active editable displays.
The Amaya web editor (Vatton et al., 1999) takes a simi-
lar approach.

2. Workbench Architecture
The MATE workbench consists of the following major

components, illustrated in figure 1:

� an internal database (see section 3.) which is an in-
memory representation of a set of hyperlinked XML
documents. There are functions for loading and out-
putting XML files into and out of the database;

� a query language and processor (see section 4.) which
are used to select parts of this database for subsequent
display or processing;

� a stylesheet language and processor (see section
5.1.) which respectively define and implement a lan-
guage for describing structural transformations on the
database. The output of a transformation applied to
a document can either be another document in the
database or a set of display objects. These are used to
define how the database will be presented to the user;

� a display processor (see section 5.2.) which is respon-
sible for handling the display and editing actions. This
takes the display object output of a stylesheet transfor-
mation and shows it to the user;

� a user interface (see section 6.) which handles file ma-
nipulation and tool invocation.

Parser
XML

Processor
Stylesheet

Processor
Query

Sound
Output

MSL StylesheetXML Data Files

Internal Representation

and Mouse
Keyboard

Screen

Processor
Display

Display InformationSound
Files

Query

Query
Result

Figure 1: The MATE workbench architecture

3. XML and the MATE Internal
Representation

3.1. Internal Database

When XML files are loaded into the workbench, the
data are stored in an internal database. The abstract data
model that we use is a directed graph, and any directed
graph can be represented in the model. Each node in this
graph has a type name (e.g. word, phrase, or other arbitrar-
ily chosen name), a set of string-valued attributes and an
list of child nodes (corresponding to outgoing edges from
the node). Edges in the model are unlabelled. A node may
have several different parent nodes, but each node has (at
most) one distinguished parent node which can be used to
treat the graph as an edge-disjoint set of trees. This view of
the graph is useful for algorithms which require a tree struc-
ture, for example writing the internal representation out to
a set of files, applying the stylesheet processor, or asking
questions about the linear order of two elements.

The internal representation is implemented as a
database of triples offnode identifier, property name, prop-
erty valueg. Properties generalise the attributes of an XML
element and most are string valued, but some have values
which are lists of other nodes in the internal representa-
tion, for example the*children and*parent properties. As
an extension to the standard XML document model (Wood
et al., 2000), Document Type Definitions (DTDs) are also
represented as objects in the database. Some of the types
of nodes and their interrelationships are shown in figure 2.

This representation of the database makes it easy for the
query language (section 4.) to ask general questions about
the annotations.

DOCUMENT

ELEMENT

ELEMENT

*children

*anyparent

*parent

*document

DTD

ELEMENTDEF

ATTRIBUTEDEF

ENTITYDEF

*elementType
*attribute

*element

*DTD
*entity

*root

Figure 2: A partial schema for the MATE internal represen-
tation

3.2. Overlapping Hierarchies
The strictly hierarchical nature of XML is at odds with

certain aspects of linguistic (particularly speech) data; in
multi-speaker dialogues, speech may overlap, and differ-
ent annotation hierarchies coded on a corpus may overlap,
for example prosody and syntax. One way to indicate this
non-hierarchical structure in XML is by the use of standoff
annotation (Isard et al., 1998). Linking between elements is
done by means of a distinguishedhref attribute of elements,
which uses a subset of the XPointer and XLink proposals
(DeRose et al., 1999; DeRose et al., 2000) to point to arbi-
trary elements in the same or different files. Such attributes
are often called hyperlinks. This extended data model al-
lows us to represent overlapping or crossing annotations.
We keep each level of annotation, and each data-stream (in
the case of multi-speaker conversations for instance) sepa-
rate, and link each further level of annotation to a common
base-level. This base level would normally be the smallest
unit on which all the other annotations depend. This may
often be the word level, but could also be phonemes in the
case of speech, higher level units such as sentences or para-
graphs or indeed anything else as appropriate. The MATE
workbench will therefore deal appropriately with any data
which are marked up in this way.

4. Queries
XML is now being used for purposes and domains pre-

viously covered by relational databases. Because XML is
strongly hierarchical and its structure is flexible (e.g. it is
possible to have optional or repeated elements), coding it
in a relational database can be a relatively expensive oper-
ation. This has led to a large number of proposed XML
query languages (Marchiori, 1998). Similar work has been
done in the database community on developing query lan-
guages for data models which are more flexible than re-
lational models, such as the work on semistructured data
(Abiteboul et al., 2000). We nonetheless chose to develop
our own query language and processor (Q4M) because 1)
when we started our work, there was no XML query mod-
ule available in Java; 2) there is still no standard in this area;

(1): ($p pros) $p refers to<pros> elements
(2): ($s sent) $s refers to<sent> elements
(3): ($w word); $w refers to<word> elements
(4): ($s.type � "ans") && <sent> type attribute

value is ”ans” AND
(5): ($s.who � "Mary") && <sent> who attribute

value is ”Mary” AND
(6): ($s][$w) && <sent> precedes

<word> AND
(7): ($w.pos � "adv") && <word> pos attribute

value is ”adv” AND
(8): ($w.who � "Peter") && <word> who attribute

value is ”Peter” AND
(9): ($w @ $p) && <pros> element occurs

during the<word> AND
(10): ($p.type � "H*") <pros> type value is “H*”

Figure 3: An example Q4M query.

3) we needed the query processor to interact well with our
internal database; and 4) we needed an extended data model
that was an arbitrary graph and not just a tree structure.

A query language appropriate for the data model re-
quires the following properties. Firstly, XML constructs
like element, attribute and attribute value must be accessi-
ble to the query language. Secondly, we need to be able to
access elements either directly, via some constraint, or indi-
rectly by following the parent-child links in the database. In
addition, the order of children in the data model is linguis-
tically significant, so we need to query on this order. This
is not possible with all query languages, for example early
versions of the semistructured data model. Thirdly, we also
want to be able to return tuples of elements, that is combina-
tions of elements with specific properties, pairs of elements
with comparable properties, elements in a hierarchical rela-
tion and so on. This feature goes beyond some other XML
query languages (such as the one defined in XSLT) which
are restricted to returning lists of elements. One example
would be a query such as the following:

Find all adverbs spoken by Peter which include an
“H*” accent, and follow directly after an answer by
Mary.

Figure 3 shows the equivalent query expression in Q4M
syntax. The Q4M expression has a variable definition part
(1-3) and a query constraint part (4-10). Various mathe-
matical operators, string operators, wild cards, and group
operators are available for atomic expressions.

Expressions can be combined by logical operators (in
this example &&); logical OR (jj) and negation (!) are
also allowed and combinations of simple expressions can
be grouped together with parentheses. The query in figure
3 also demonstrates the use of time relations available in
Q4M, e.g. ’@’ (temporal inclusion) and ’][’ (temporal con-
tact). See (Mengel, 1999a; Heid and Mengel, 1999) for an
overview of the operators available in Q4M.

The result of a query is a list of tuples of nodes in the
internal representation that match the query. In the exam-
ple given above, these would be tuples of ($p, $s, and $w)
elements. The output of Q4M is stored as a new structure
within the internal representation where it can be accessed
for display to the user or be used for subsequent manipula-
tion within the workbench.

5. Stylesheets and Display
5.1. MATE Stylesheet Language and Processor

We have defined a declarative, functional, tree-
transformation language for mapping a logical document
structure into a different document structure. The emerg-
ing standard in this area is XSLT (Clark, 1999), but since
it was not fully defined when the workbench was designed,
and lacks some functionalities necessary to us, we decided
to implement a slightly different and simpler transforma-
tion language, MATE Stylesheet Language (MSL), which
uses the MATE query language, but is otherwise very simi-
lar to XSLT. Transformation specifications written in XSLT
or MSL are called stylesheets. Each stylesheet consists
of one or more templates, and each template contains a
query against which elements in the input document(s) are
matched and a set of instructions to follow if a match is
found. These instructions will often include one to recur-
sively process the children of the matching node. A frag-
ment of a stylesheet is shown in figure 7.

In order to support flexible display and editing of cor-
pus files, we require a flexible mapping between the logical
structure of the data and the display structure. For example,
we might want to highlight certain elements which satisfy
some query or only display a summary of the document,
or omit certain parts of the structure. This flexibility helps
in the exploration of the corpus and enables users to write
specific editors for particular annotation tasks. To provide
this flexibility, firstly we assume that the visual appearance
of a displayed document can be decomposed into display
objects which form a hierarchical structure, for example
XHTML or Java display objects, and this display structure
can then be described as an XML document. Formulated
this way, the transformation between logical and display
structures is a mapping from a directed graph to a tree.

When the stylesheet processor is run, a document or set
of linked documents in the internal representation is pro-
cessed along with a stylesheet written in MSL. Normally,
the stylesheet processor outputs a display structure as de-
scribed above, which is then processed by the display pro-
cessor to show something to the user. It can also be run in
an alternative mode, in which case the input document can
be transformed into an arbitrary output document structure
in the internal representation, thus providing for transfor-
mations of the corpus annotations. The project has devel-
oped annotation schemes for five sets of linguistic phenom-
ena (Klein et al., 1998; Mengel, 1999b), and examples of
markup using these schemes will be distributed with the
workbench, along with stylesheets for their annotation and
display. Users of the workbench are by no means limited to
these schemes, however.

5.2. Display Objects

We have defined a set of Java classes for different types
of MATE display objects which are based on the Java
Swing user interface classes. These MATE display ob-
jects are used for creating displays for coding corpora or
for showing query results. Each display object has a set of
properties, which can be set, either directly in a Java pro-
gram, or by running the Stylesheet Processor (with a MATE
stylesheet and one or more XML files as input). The main

components used for building a display are panes (used to
divide the display into two or more sections), vertical lists,
horizontal lists, and text boxes (see figure 6 below for an
example display).

5.3. Display Actions

In order to allow the user to interact with displays built
from MATE display objects, we have added certain action
properties to each object. These specify, for example, the
behaviour which will occur if a user clicks on an object in
the display, and when one of these display actions occurs,
code in one of the attributes of the display object defines
what is to happen. For example, if an XML file is associ-
ated with a speech file (through the use of start and end time
attributes on word elements) then an action can be written
which causes the relevant section of speech to be played
when a word is clicked on. The code is written in a Lisp-
like syntax which allows any Java method to be called. The
basic idea is that the code can manipulate the internal rep-
resentation and/or the display objects, and thus user actions
on the display structure can modify the internal represen-
tation. We provide a “redisplay” method, which reruns the
stylesheet on the modified part of the database and redis-
plays the output. We are not yet entirely satisfied with this
action syntax, and in future work we will look at defining a
set of common editing paradigms, so that stylesheet writers
will be able to use these without having to know about the
code that does the modifications of the database.

6. User Interface

Figure 4: File Chooser Menu

When the workbench is started, a file chooser window
(figure 4) appears, and the user can select a project, causing
a list of the files referenced by the project file to appear
in the right-hand window. The project can then be run to
display a particular interface which consists of one or more
windows, each contraining a speech player, or a number of
panes of text. An example interface is shown in figure 6.

6.1. Tools

Various tools can be called from the file chooser win-
dow menus. The querying functions of the workbench can
be called in two ways: 1) The project on which the query is
to be performed can be chosen from a menu in the startup
window, without creating a display and 2) if a display has

already been created, the files which make up the project
used to create it will be queried. Both of these methods
bring up a query window which interactively guides the
user through the process of composing a query. The results
of the query are shown as a list, and if a display is already
present, clicking on an element in the list repositions the
main display on that element.

We currently have two available file format conversion
tools. One converts from Entropics Xlabel format (En-
tropic, 1996) to a simple XML format, creating an element
for each label (by default called “word”) with start and end
time attributes and content from the label. The other con-
verts from BAS Partitur format (Schiel et al., 1998) into an
XML format.

6.1.1. Audio Player

Figure 5: Audio Player Window

An audio player window (figure 5) can be started in two
ways: 1) from the main tools menu, in which case the user
is prompted for a filename, or 2) by the selection of an
audio file in the right-hand side of the file choose menu.
This tool provides a scalable waveform display and stan-
dard playback functions. When a segment of speech has
been selected, it is also possible to use a very simple tran-
scription function, which produces an XML element with
id, start and end times, and a label, and this can be saved
to a file. We do not envisage that users will want to use the
MATE workbench for large-scale transcription exercises as
there are existing tools well suited to this purpose.

6.1.2. Coding Module Editor
If the user enters the workbench to carry out an anno-

tation task, she/he first selects a coding module. A cod-
ing module prescribes what constitutes a coding, including
the representation of markup and the relations to other cod-
ings. Users can produce new coding modules or view a pre-
existing coding module along with its corresponding cod-
ing files using the MATE Coding Module Editor (CME),
an intuitive user interface integrated into the MATE work-
bench.

Within the MATE workbench, the coding module and
coding files are represented in XML providing an easy and
precise parsing of the module and its corresponding coding
files. However, using the CME to compose a coding mod-
ule will only require a minimal knowledge of XML; the tool
itself automatically generates the XML DTD from the ele-
ment structure defined by the user. The markup declaration
section of the coding module is represented as a tree, and
the user adds elements, attributes, entities and comments to
the tree to construct the markup declaration. For each node
the name, type, etc. is specified. The tree can be parsed to
create a coding module text document. The markup decla-
ration node and its sub-nodes contain information that can
be used to create a DTD which is used internally in the Mate
workbench.

6.2. Example Display

Figure 6: Morphosyntax Display

Figure 6 shows a display of morphosyntactic annota-
tion. The display is built of three panes, each of which
consists of a vertical list made up of horizontal lists which
in turn are made up of text boxes. Figure 7 shows a frag-
ment of the stylesheet used to create the display; this tem-
plate matches all word elements which are the last child of
a chunk element, and creates the top level of boxes in the
example. Further templates match words in other contexts,
to build up the whole picture.

7. Evaluation
At the time of writing, the MATE workbench is under-

going evaluation by members of the MATE project and its
panel of advisors. There is not yet a full-scale evaluation of
how well the software works on a large annotation project,
which is essential to fully demonstrate the validity of our
approach. However, we have developed a number of differ-
ent annotation schemes and stylesheets for these schemes
and these are available with the workbench.

Information on how to obtain a copy of the MATE
workbench can be found at http://mate.nis.sdu.dk

8. Acknowledgements
The work described here was funded by the European

Union (MATE project: Telematics LE4-8370). We wish to

<msl:template match="($w word)($ch ch);($ch 2ˆm $w)">
<MVerticalList Alignment="Left"

FrameVisible="True" FrameColor="Magenta">
<msl:apply-templates

select="($ch ch);($ch 2ˆ $this)"/>
<MHorizontalList Alignment="Left">
<msl:for-each

select="($w word)($ch ch)($mw mw);($ch 2ˆm $this)
and ($ch 2ˆn $w) and ($mw 1ˆm $w)">

<MVerticalList Alignment="Left"
FrameVisible="True" FrameColor="Blue">

<MHorizontalList Alignment="Left">
<msl:for-each

select="($w word)($mw mw);($mw 1ˆm $this)
and ($mw 1ˆ $w)" cache="no">

<MTextEditor FontSize="12">
<msl:apply-templates/>
<msl:text> </msl:text>

</MTextEditor>
</msl:for-each>

</MHorizontalList>
<MHorizontalList Alignment="Left">
<msl:apply-templates

select="($mw mw);($mw 1ˆm $this)" cache="no"/>
</MHorizontalList>

</MVerticalList>
</msl:for-each>

</MHorizontalList>
</MVerticalList>
</msl:template>

Figure 7: Fragment of an MSL stylesheet

thank our respective institutes for their support.

9. References
Abiteboul, Serge, Peter Buneman, and Dan Suciu, 2000.

Data on the Web: from relations to semistructured data
and XML. San Francisco, California: Morgan Kauf-
mann.

Adler, Sharon C., 1997. The “ABCs” of DSSSL.Struc-
tured Information/Standards for Document Architec-
tures, 48(7):597–602. Journal of the American Society
for Information Science, Special Issue.

Bird, Steven and Mark Liberman, 2000. Linguistic
annotation resources. Linguistic Data Consortium.
www.ldc.upenn.edu/annotation.

Bray, Tim, Jean Paoli, and C. M. Sperberg-McQueen, 1998.
Extensible Markup Language. World Wide Web Consor-
tium. www.w3.org/TR/REC-xml.

Clark, James, 1999. XSL Transformations (XSLT). World
Wide Web Consortium. www.w3.org/TR/xslt.

Cunningham, Hamish, Yorick Wilks, and Robert J.
Gaizauskas, 1996. GATE – a general architec-
ture for text engineering. InProceedings of the
16th International Conference on Computational
Linguistics. Copenhagen, Denmark. See also
www.dcs.shef.ac.uk/research/groups/nlp/gate.

DeRose, Steve, Ron Daniel Jr., and Eve Maler, 1999. XML
Pointer Language (XPointer). World Wide Web Consor-
tium. www.w3.org/TR/xptr.

DeRose, Steve, Eve Maler, David Orchard, and Ben Traf-
ford, 2000. XML Linking Language (XLink). World
Wide Web Consortium. www.w3.org/TR/xlink.

Entropic, 1996.Waves+ Manual. Entropic Research Lab-
oratory Inc. www.entropic.com.

Goldfarb, Charles F. and Paul Prescod, 1998.The XML
Handbook. Upper Saddle River, NJ: Prentice Hall.

Goldman, Roy, Jason McHugh, and Jennifer Widom, 1999.
From semistructured data to XML: Migrating the Lore
data model and query language. InProceedings of the
2nd International Workshop on the Web and Databases
(WebDB ’99). Philadelphia, Pennsylvania. See also
www-db.stanford.edu/lore.

Heid, Ulrich and Andreas Mengel, 1999. A query language
for research in phonetics. InProceedings of the Inter-
national Congress of Phonetic Sciences (ICPhS99). San
Francisco, California.

Ide, Nancy and Jean V´eronis (eds.), 1995.The Text En-
coding Initiative: Background and Context. Dordrecht:
Kluwer. See also www.tei-c.org.

Isard, Amy, David McKelvie, and Henry S. Thomp-
son, 1998. Towards a minimal standard for dia-
logue transcripts: A new SGML architecture for
the HCRC Map Task corpus. InProceedings of
the 5th International Conference on Spoken Lan-
guage Processing, ICSLP98. Sydney, Australia.
www.ltg.ed.ac.uk/Papers/�dmck/icslp98.ps.

Klein, Marion, Niels Ole Bernsen, Sarah Davies, Laila Dy-
bkjaer, Juanma Garrido, Henrik Kasch, Andreas Mengel,
Vito Pirelli, Massimo Poesio, Silvia Quazza, and Claudia
Soria, 1998. MATE deliverable 1.1: Supported coding
schemes. mate.nis.sdu.dk/about/deliverables.html.

LeMaitre, Jacques, Elisabeth Muriasco, and Monique Rol-
bert, 1996. SgmlQL, a language for querying SGML
documents. InProceedings of the 4th European Confer-
ence on Information Systems (ECIS’96). Lisbon, Portu-
gal. See also www.univ-tln.fr/�gect/simm/SgmlQL.

Marchiori, Massimo, 1998. QL’98 - the Query Lan-
guages Workshop. World Wide Web Consortium.
www.w3.org/TandS/QL/QL98.

Mengel, Andreas, 1999a.Manual for Q4M. Institut für
Maschinelle Sprachverarbeitung, Universit¨at Stuttgart.
www.ims.uni-stuttgart.de/projekte/mate/q4m.

Mengel, Andreas, 1999b. MATE deliver-
able 2.1: DTDs and notes on schemas.
mate.nis.sdu.dk/about/deliverables.html.

Murata, Makoto and Jonathan Robie, 1998. Obser-
vations on structured query languages. In Mas-
simo Marchiori (ed.), Proceedings of QL’89 - The
Query Languages Workshop. Boston, Massachussets.
www.w3.org/TandS/QL/QL98/pp/murata-san.html.

Schiel, Florian, Susanne Burger, Anja Geumann, and Karl
Weilhammer, 1998. The partitur format at bas. InPro-
ceedings of the First International Conference on Lan-
guage Resources and Evaluation. Granada, Spain.

Vatton, Irène, Ramzi Gu´etari, Jos´e Kahan, and Vincent
Quint, 1999. Amaya – W3C’s editor/browser. World
Wide Web Consortium. www.w3.org/Amaya.

Wood, Lauren, Arnaud Le Hors, Vidur Apparao, Laurence
Cable, Mike Champion, Mark Davis, Joe Kesselman,
Philippe Le Hégaret, Tom Pixley, Jonathan Robie, Pe-
ter Sharpe, and Chris Wilson, 2000. Document Object
Model (DOM) level 2 specification. World Wide Web
Consortium. www.w3.org/TR/DOM-Level-2.

