
Screffva: A Lexicographer's Workbench

Jon Mills

University of Luton
Vicarage Street, Luton, Bedfordshire, LU1 3JU, UK

jon.mills@luton.ac.uk

Abstract
This paper describes the implementation of Screffva, a computer system written in Prolog that employs a parallel corpus for the
automatic generation of bilingual dictionary entries. Screffva provides a lemmatised interface between a parallel corpus and its
bilingual dictionary. The system has been trialled with a parallel corpus of Cornish-English bitext. Screffva is able to retrieve any given
segment of text, and uniquely identifies lexemes and the equivalences that exist between the lexical items in a bitext. Furthermore the
system is able to cope with discontinuous multiword lexemes. The system is thus able to find glosses for individual lexical items or to
produce longer lexical entries which include part-of-speech, glosses and example sentences from the corpus. The corpus is converted
to a Prolog text database and lemmatised. Equivalents are then aligned. Finally Prolog predicates are defined for the retrieval of
glosses, part-of-speech and example sentences to illustrate usage. Lexemes, including discontinuous multiword lexemes, are uniquely
identified by the system and indexed to their respective segments of the corpus. Insofar as the system is able to identify specific
translation equivalents in the bitext, the system provides a much more powerful research tool than existing concordancers such as
ParaConc, WordSmith, XCorpus and Multiconcord. The system is able to automatically generate a bilingual dictionary which can be
exported and used as the basis for a paper dictionary. Alternatively the system can be used directly as an electronic bilingual
dictionary.

Introduction
There are a number of systems available which are
capable of producing concordances from parallel corpora.
Examples of such systems include ParaConc (see Barlow
1995), Wordsmith Tools (see Berber Sardinha 1996),
XCorpus (see Bonhomme & Romary 1997) and
Multiconcord (see St. John & Chattle 1998). With such
systems, lemmatisation is usually achieved by entering all
the variant forms for the lexeme under investigation.
However this method achieves only partial lemmatisation
as it is also necessary to disambiguate homographs. Wild
cards are often employed to implement a fuzzy search for
a particular lexeme; for example tak* will find take,
takes, taking and taken, but not took. Use of wildcards
also frequently finds words which are not part of the
paradigm under investigation. Lemmatisation methods
such as these are not precise and post-editing of
concordances is, therefore, usually necessary in order to
remove unwanted items that are not part of the paradigm
being investigated.
Text alignment is usually carried out at the rank of
sentence, so that, for example, sentence nine in the first
text is equivalent to sentence nine in the parallel text.
However alignment at sentence level may prove to be
problematic because a translator may translate one
sentence by two or more sentences. Alternatively texts can
be aligned at the rank of paragraph, so that paragraph nine
in one language is equivalent to paragraph nine in its
parallel text. Whether alignment takes place at the rank of
sentence or paragraph, concordances do not specifically
identify translation equivalents of the particular lexemes
under investigation. Instead entire sentences which
provide the context for the translation equivalents are
given.
Existing tools for working with parallel corpora seem,
then, to lack two things, firstly the means to uniquely
identify lexemes, and secondly the means to identify those
items which share translation equivalence in a bitext.
These problems are interrelated since it is between

lexemes (rather than the graphical words) of a language
pair that equivalence tends to exist. In order to solve these
problems, firstly the system must be able to find and
retrieve any given segment of text; secondly the bitext
must be fully lemmatised; and thirdly the bitext must be
aligned at the rank of lexical item.
Screffva consists of a number of modules: the tokenisation
module, VOLTA - the lemmatisation module, the text
alignment module, the corpus, and the dictionary.

Critical Tokenisation
Not all segments are tokens. A token is a segment that
corresponds to a particular linguistic unit on the scale of
rank. Thus a text may be said to consist of morpheme-
tokens, word-tokens, phrase-tokens, clause-tokens, etc..
For the purposes of lexicography, we are usually
concerned with tokens at the ranks of morpheme, word
and multiword lexeme. Such tokens correspond to lexical
items, and I shall call these lexical tokens. So the set, A,
of all tokens in a text is a subset of the set, B, of all
possible segments in that text :

A ⊂ B .
Mills (1998) describes how critical tokenisation may serve
as a basis for the construction of text databases in the
Prolog programming language. It is necessary to represent
a text in such a way that both individual tokens and
individual types can be identified. Segments and points
form a basis for tokenisation. A critical point in a text is
that which delimits two adjacent segments. Conversely a
critical segment of text is that which is delimited by two
points in the text. Segments are, thus, located in time and
space. Segments can be observed, pointed to and given
unique names. Segments and strings are not the same.
Segments are instances of strings. Two segments may be
instances of the same string. Segments may, thus,
correspond to tokens, whereas strings correspond to types.
Figure 1 shows how critical tokenisation can be applied to
a stretch of text.

Critical Points

Critical segments

poorI am a fisherman
35 36 37 38 39 40

Figure 1
Figure 2 shows how the principles of critical tokenisation
may be applied to to create a Prolog database from this
same stretch of text. The text is arranged vertically with
each token on a separate line. Each token is represented by
a three place predicate. The first and second arguments are
the critical points which define the segment covered by
the token. The third argument is the word type of which
the token is an instance.

type((35, 36), 'I').
type((36, 37), am).
type((37, 38), a).
type((38, 39), poor).
type((39, 40), fisherman).

Figure 2
With the text in the form of a database it is possible to
conduct various types of search. For example, if one wants
to know what word type is found between critical points
36 and 37, one sets the goal,

?- type((36,37),T).

The system returns,
T = am

Conversely, if one wants to know in what text positions
the word type am is found, one sets the goal,

?- type((X,Y),am).

The system returns,
X = 36
Y = 37

If one wants the phrase found between critical points 35
and 40, one sets the goal,

?- get_segment((35,40),Segment).

The system returns,
Segment = [I, am, a, poor, fisherman] .

This system thus provides the requirement of being able to
find and retrieve any given segment of text.

Lemmatisation
Lexical items are selected from the corpus on which the
dictionary is based whilst simultaneously the dictionary
provides information concerning the lemmatisation of the
corpus. The processes of dictionary lemmatisation and
corpus lemmatisation are, therefore, interdependent. An
ideal system for corpus lexicography is one in which the
corpus database and the dictionary are interactive. Mills
(1999) shows how a logical approach to the lemmatisation
of computational lexica may be implemented in Prolog.
The counterpart of a Prolog dictionary is the lemmatised
Prolog text database.
For the purposes of corpus lemmatisation, the lemma
should ideally uniquely identify the lexical item. Part of
speech tagging goes some way towards this. Tagging with
the baseform further disambiguates the item. Clauses are
added to the Prolog text database to represent
lemmatisation. VOLTA (Mills 1995) is a program that

lemmatises a corpus by relating word tokens as they are
encountered in the corpus to a lexicon that has capacity to
expand as new items are are added. Figure 3 shows the
lemmatisation of the extract that we saw in Figure 2.

lemma((35, 36), ('I', pron)).
lemma((36, 37), (be, v)).
lemma((37, 38), (a, art)).
lemma((38, 39), (poor, adj)).
lemma((39, 40), (fisherman, n)).

Figure 3
Within the bitext, the English word FISHERMAN is
translated by the Cornish multiword lexeme DEN AN
PUSKES (literally DEN = a man, AN = of the, PUSKES
= fishes). Figure 4 shows the tokenisation and
lemmatisation of the Cornish translation of the English
phrase given in Figure 2. The system is very flexible. Not
only can the multi-word lexeme, DEN AN PUSKES, be
lemmatised as a single lexical item but its component
lexemes DEN, AN and PYSK may be simultaneously
individually lemmatised. The appearance of the lexeme,
PYSK, in its plural form, puskes, within the multiword
lexeme, DEN AN PUSKES, does not present a problem to
the system. Nor does it present a problem that, due to
interruption by the lexeme, BOGHOSEK, the multiword
lexeme, DEN AN PUSKES, is, in this instance,
discontinuous.

type((29, 30), thearra).
type((30, 31), vee).
type((31, 32), dean).
type((32, 33), bodjack).
type((33, 34), an).
type((34, 35), puscas).

lemma((29, 30), (bones, v)).
lemma((30, 31), (vy, pron)).
lemma((31, 32), (den, n)).
lemma((32, 33), (boghosek, adj)).
lemma((33, 34), (an, art)).
lemma((34, 35), (pysk, n)).
lemma((31, 35), ('den an puskes', n)).

Figure 4
The lemma database thus records that the segment
between critical points 31 and 35 contains five lexemes:
DEN between points 31 and 32, BOGHOSEK between
points 32 and 33, AN between points 33 and 34, PYSK
between points 34 and 35, and the multiword lexeme DEN
AN PUSKES between points 31 and 35.

Alignment
Equivalence exists between the lexical units of a bitext
rather than its word types. For this reason alignment takes
place between lexical tokens rather than graphic word
tokens. Equivalents may be entered into the system as 2
place predicates in which the first argument specifies the
critical points that bound the Cornish lexical unit, whilst
the second argument specifies the critical points that
bound the lexical unit which is its English translation.

equivalent((29,30), (36,37)).
equivalent((30,31), (35,36)).
equivalent((31,35), (39,40)).

Figure 5
Thus the Cornish lexeme, BONES, found at token (29,
30), is translated by the English lexeme, BE, found at
token (36, 37). Similarly the Cornish lexeme, VY, found

at token (30, 31), is translated by the English lexeme, I,
found at token (35, 36). And the Cornish multiword
lexeme, DEN AN PUSKES, found at token (31, 35), is
translated by the English single lexeme, FISHERMAN,
found at token (39, 40).
It is important to note that this alignment refers to the
lexemes listed in the lemma database and does not refer to
the types listed in the original tokenisation. If it did, then
the English type, fisherman, found at token (39, 40),
would be the translation of the Cornish phrase, dean
bodjack an puscas, found at token (31, 35), which is not
the case. Dean bodjack an puscas translates into English
as a poor fisherman.
A number of predicates are defined which enable the
corpus to be used like a dictionary. For example, the
predicate, gloss_lemma/2, finds the English gloss for a
Cornish item or vice versa. The predicate, entry/1,
displays the full dictionary entry for the requested item
(see Figure 6).

Figure 6

Discussion
The system is able to retrieve any given segment of text,
and uniquely identifies lexemes and the equivalences that
exist between the lexical items in a bitext. Furthermore the
system is able to cope with discontinuous multiword
lexemes. The system is thus able to find glosses for
individual lexical items or to produce longer lexical
entries which include part-of-speech, glosses and example
sentences from the corpus. Insofar as the system is able to
identify specific translation equivalents in the bitext, the
system provides a much more powerful research tool than
existing concordancers such as ParaConc, WordSmith,
XCorpus and Multiconcord. The system is able to
automatically generate a bilingual dictionary which can be
exported and used as the basis for a paper dictionary.
Alternatively the system can be used directly as an
electronic bilingual dictionary.

References
Barlow, Michael (1995) "A Guide to ParaConc"

Available http://www.ruf.rice.edu/~barlow/pc.html .
Berber Sardinha, A. P. (1996) "Review: WordSmith

Tools" Computers & Texts No. 12 p. 19. ISSN 0963-
1763.

Bonhomme, Patrice & Laurent Romary (1997)
XCORPUS - Version 0.2: A Corpus Toolkit
Environment: User Manual Available:
http://www.loria.fr/projets/XCorpus/manual/ .

Mills, Jon (1995) “Computer Assisted Lemmatisation of a
Diachronic Corpus of Cornish” Proceedings of TCIPA
II, University of Luton, 7 July 1995. pp. 9.1-9.16.

Mills, Jon (1998) "Lexicon Based Critical Tokenisation:
An Algorithm" Actes EURALEX'98 Proceedings:
Papers Submitted to the Eighth EURALEX

International Congress on Lexicography in Liège,
Belgium Liège: University of Liège, English and Dutch
Departments. pp. 213-220.

Mills, Jon (1999) "A Logical Approach to the
Lemmatisation of Computational Lexica" Proceedings
of the Sixth International Symposium on Social
Communication, Santiago de Cuba, 25-28 January 1998
. pp. 598-605.

St. John, Elke & Marc Chattle (1998) "Review of
Multiconcord: The Lingua Multilingual Parallel
Concordancer for Windows" ReCALL Newsletter No
13, March 98 . ISSN 1353-1921.

