
Experiences of Language Engineering Algorithm Reuse

Björn Gambäck, Fredrik Olsson

Information and Language Engineering Group

Swedish Institute of Computer Science

Box 1263, S�164 29 Kista, Sweden

{gamback, fredriko}@sics.se

Abstract
Traditionally, the level of reusability of language processing resources within the research community has been very

low. Most of the recycling of linguistic resources has been concerned with reuse of data, e.g., corpora, lexica, and

grammars, while the algorithmic resources far too seldom have been shared between di�erent projects and institutions.

As a consequence, researchers who are willing to reuse somebody else's processing components have been forced to invest

major e�orts into issues of integration, inter-process communication, and interface design.

In this paper, we discuss the experiences drawn from the svensk project regarding the issues on reusability of language

engineering software as well as some of the challenges for the research community which are prompted by them. Their main

characteristics can be laid out along three dimensions; technical/software challenges, linguistic challenges, and `political'

challenges. In the end, the unavoidable conclusion is that it de�nitely is time to bring more aspects of engineering into

the Computational Linguistic community!

1. Introduction

It is a generally accepted belief that data can be

reused, and there are today several repositories which

collect and distribute data; however, there have so far

not been many attempts to do the same for the pro-

grams which operate on these data. There are a few

frameworks and platforms available which aim to ease

program and algorithm reuse, but the distribution and

collection of algorithmic resources is more or less non-

existent. Possibly because the programs tend to be

more speci�c in terms of, e.g., platform, time, and

space requirements than the data are.

The svensk project at SICS, the Swedish Institute

of Computer Science, is an attempt to collect Swedish

language processing resources and to integrate them in

one common framework, GATE, General Architecture

for Text Engineering from the University of She�eld.

The main point is that by collecting a large set of re-

sources under one roof it will be easier for researches

and non-commercial organisations in Sweden to get a

grasp of what type of resources actually are available,

to reuse the ones which �t their needs, and to dis-

tribute the results of their own research to others.

The rest of the paper discusses the experiences we

have drawn from the project and some of the challenges

for the research community which follow from them.

However, we start out with a short overview of other

previous and present e�orts along similar lines, as well

as of the svensk project as such.

2. Algorithm reuse vs. data reuse

Traditionally, the level of reusability of language

processing resources within the research community

has been very low. Most of the recycling of linguis-

tic resources has been concerned with reuse of data,

that is, of corpora, lexica, and (to some extent) gram-

mars, while the algorithmic resources far too seldom

have been shared between di�erent projects and insti-

tutions.

Even though there are some repositories for algo-

rithms, e.g., the DFKI Natural Language Software

Registry (an initiative of the Association for Compu-

tational Linguistics) in the same fashion as there are

archives for data (such as the Linguistic Data Con-

sortium or the European Language Resources Associa-

tion), a prime obstacle to reuse of algorithmic resources

has been that there have been few easily-available de-

velopment platforms for language engineering (LE). A

researcher willing to reuse somebody else's processing

components has been forced to invest major e�orts into

issues of integration, inter-process communication, and

interface design.

In Europe, there have so far been few e�orts to de-

sign and build general purpose LE platforms. ALEP,

the Advanced Language Engineering Platform (Simp-

kins and Groenendijk, 1994; Bredenkamp et al., 1997)

was an initiative of the European Commission which

aimed in this direction. It provided a range of process-

ing resources and was particularly targeted at support-

ing multilinguality. ALEP did, however, impose its

own formalisms (for grammars, etc.) on the develop-

ers and users. In addition, ALEP was very slow (Eriks-

son and Gambäck, 1997) and the system never became

widely spread.

Another relevant platform, although directed to-

wards one particular application, is the German Verb-

mobil architecture (Bub and Schwinn, 1996), which

incorporates components developed at several di�erent

sites and in many di�erent programming paradigms. It

employs a communication package called ICE (Intarc

Communication Environment), but is of course pri-

marily developed for the speci�c needs of the Verbmo-

bil project, a multilingual speech-to-speech dialogue

translation task.



In the US, there have been some e�orts in the di-

rection of open architectures that incorporates lan-

guage processing, both by single companies � such

as the multimodal Open Agent ArchitectureTM from

SRI International (Cohen et al., 1994; Moran et al.,

1997) � and in particular within the research pro-

grammes sponsored by DARPA, the Defense Advanced

Research Projects Agency, where a design of a general

architecture called TIPSTER (Grishman, 1995) was

agreed upon. However, the full TIPSTER annotation

scheme (Grishman and others, 1997) has not been im-

plemented as such.

In a recent DARPA funded programme called Com-

municator, the MITRE Cooperation is developing a

testbed similar to the Verbmobil one. The initial

DARPA Communicator architecture (DCA) extends

the MIT Galaxy system (Sene� et al., 1998) and pro-

vides an environment for testing a wide range of types

of components: language understanding and genera-

tion, speech recognition and synthesis, dialogue man-

agement, and context tracking (Goldschen and Loehr,

1999). In the DCA a central process called the Hub is

connected with a variety of server processes and con-

trols the control �ow between them.

Going back to Europe again, �nally, GATE, the

General Architecture for Text Engineering, is an

open platform for LE developed by the University of

She�eld, UK. As it turns out, GATE (as described in

the next section) is the most suitable platform for our

needs in developing and compiling a collection of LE

software in the svensk project.

3. GATE

The GATE language engineering platform (Cun-

ningham et al., 1996) is developed at the Univer-

sity of She�eld and funded by the U.K. Engineer-

ing and Physical Sciences Research Council (EPSRC).

GATE provides a communication and control infras-

tructure for linking together language engineering soft-

ware. It does not adhere to a particular linguistic the-

ory, but is rather an architecture and a development

environment designed to �t the needs of researchers

and application developers. GATE is available free of

charge for non-commercial use, and, for demonstra-

tion purposes, it comes with a set of components that

form a system called VIE, Vanilla Information Extrac-

tion (Humphreys et al., 1996).

GATE supports reuse of resources, data as well

as algorithms, since it provides for well-de�ned, user-

friendly application programmers interfaces (APIs).

Once a module has been integrated in the system, it is

very easy to combine it with already existing modules

to form new systems. GATE contributes to the porta-

bility of components in the sense that software written

in programming languages stemming from completely

di�erent paradigms can be mixed.

Each component integrated into GATE has a stan-

dard I/O interface, which conforms to a subset of the

TIPSTER annotation model. This means that GATE

compatibility equals TIPSTER compatibility, allowing

developers (and users) to easily add all types of TIP-

STER compatible components to the platform, and

then link them together to form an application.

The infrastructure of GATE provides several lev-

els of integration, re�ecting how closely a new module

should be connected to the core system; however, at all

integration levels a wrapper code must surround the

core module code. This wrapper describes the com-

munication between the module and the GATE sys-

tem, i.e., the mapping between the I/O of the module

and the corresponding TIPSTER primitives as imple-

mented in the GATE. Also, for each module, there

must be a speci�cation of the type of input and out-

put data of the module in terms of the TIPSTER

database annotation scheme. This is the information

that GATE needs in order to connect the module to

the other integrated modules in the system.

4. The SVENSK project

The svensk project (Eriksson and Gambäck, 1997;

Olsson et al., 1998) is a national e�ort funded by the

Swedish National Board for Industrial and Technical

Development (Nutek) and SICS addressing the prob-

lem of reusing LE software. The aim has been to

develop a multi-purpose language processing system

for Swedish based, where possible, on existing com-

ponents. Rather than building a monolithic system

attempting to meet the needs of both academia and

industry, the project has created a general toolbox

of reusable language processing components and re-

sources, primarily targeted at teaching and research.

The svensk system as such is mainly the sum of a

fairly large set of di�erent reusable language resources.

The reusability of the LE components in svensk

system arises from having each component integrated

into GATE. SICS has so far incorporated a wide range

of di�erent modules: in-house modules, commercially

available modules, modules freely available on the in-

ternet, and modules from Swedish academia. The

main characteristica of the modules are outlined in the

next section.

The svensk project was divided into three phases,

the �rst of which was covering the period from spring

1996 to the end of 1996 and the second from the begin-

ning of 1997 to August 1997. The third phase started

in January 1998 and ran until the end of 1999. In this

sense, the project as such has been concluded and be-

low we will discuss our experiences from it. However,

as a national repository for language processing re-

sources, the svensk system will live on. SICS has thus

obtained some continued funding for the system for

distributing it and for supporting Swedish academia

in the process of incorporating new language process-

ing resources into it.

4.1. Language Components in SVENSK

The modules which so far have been included in

svensk are shown in Figure 1. The components stem

from a wide range of paradigms and were developed in

several projects at di�erent institutions. Thus, they



F
re
e
te
x
t

?

v
a
n
N
o
o
rd
's
T
ex
tC
a
t

?

?

T
ex
t
p
re
p
ro
ce
ss
o
r

S
W
E
C
G
:
S
w
ed
is
h

C
o
n
st
ra
in
t
G
ra
m
m
a
r

C
o
n
st
ra
in
t
G
ra
m
m
a
r
ta
g
s

?

S
W
E
C
G
2
S
L
E

(f
o
rm
a
t
co
n
v
er
te
r)

L
ex
ic
a
l
te
m
p
la
te
s

?

D
U
P
:
D
ee
p
-l
ev
el

U
n
i�
ca
ti
o
n
-b
a
se
d
P
ro
ce
ss
o
r

?

Q
u
a
si
-L
o
g
ic
a
l
F
o
rm
s

?

D
S
P
:
D
o
m
a
in

S
p
ec
i�
c
P
ro
ce
ss
o
r

?

D
ep
en
d
en
cy
g
ra
p
h
s

?

T
o
k
en
is
er

T
o
k
en
is
ed
te
x
t

?

U
C
P
:
U
p
p
sa
la

C
h
a
rt
P
ro
ce
ss
o
r

?

M
o
rp
h
o
lo
g
ic
a
l
st
ru
ct
u
re
s

�

?

S
en
te
n
ce
sp
li
tt
er

S
en
te
n
ce
s

?

B
ri
ll
T
a
g
g
er

fo
r
S
w
ed
is
h

?

P
O
S
-t
a
g
g
ed
te
x
t

?

P
a
rs
er
B
o
x

(e
d
u
ca
ti
o
n
a
l
to
o
l)
:

T
o
p
-D
o
w
n
,
B
U
P
,
w
fs
t

H
ea
d
P
a
rs
e
,
L
in
k
P
a
rs
e

C
h
a
rt
P
a
rs
e
,
L
R
-P
a
rs
e

?

A
tt
ri
b
u
te
-v
a
lu
e
st
ru
ct
u
re
s

G

A
T
E

Figure 1: How the modules in svensk are interconnected to form di�erent processing chains.



were not primarily designed and implemented with

their interoperability in mind.

Two of the modules are commercially available pro-

grams for morphological and functional analysis, both

from LingSoft OY, Helsinki. Another component,

van Noord's text categoriser and language identi�er

is freely available on the Internet.1 Swedish academia

have contributed a version of Brill's PoS tagger and the

morphological processing of the Uppsala Chart Pro-

cessor. Some other components were previously devel-

oped at SICS: a deep-level uni�cation-based proces-

sor, a domain-speci�c processor, the �parser-box� (a

toolkit for educational purposes including several types

of parsers), as well as segmentation and tokenisation

modules.

The input to svensk is plain text �les, converted by

GATE to an internal format based on the TIPSTER

annotation scheme. There are several possible pro-

cessing chains in svensk. Currently all start with van

Noord's TextCat which is intended as an optional �lter

for avoiding processing texts in other languages than

Swedish (one could, for instance, easily add a module

prior to TextCat which, given a set of URLs, fetches

texts from the Internet and forwards them to TextCat,

which then decides which texts should be further pro-

cessed by the system).

Starting with the left-most processing chain shown

in Figure 1, the output from svensk, is as follows:

� the Domain Speci�c Processor (Sunnehall, 1996)

produces shallow dependency intended for use in

applications that require a robust interface for a

speci�c application, such as the Olga dialogue sys-

tem (Beskow et al., 1997);

� the second chain ends in a deep-level uni�cation-

based processor, a component made up of a fairly

large-scale grammar for Swedish (Gambäck, 1997)

and an LR-parser operating on the uni�cation-

based grammar formalism (Samuelsson, 1994).

The grammar has been used for machine transla-

tion and database interfacing projects and yields

a relatively 'deep' level of analysis but at the cost

of robustness;

� the Uppsala Chart Processor (Sågvall-Hein, 1981)

�nishes o� the third chain, which produces mor-

phological analyses of the input text;

� the last but one processing chain results in part-of-

speech tagged text produced by a Swedish version

(Prütz, 1997) of the Brill Tagger (Brill, 1992);

� �nally, the last chain ends in ParserBox which

is an educational tool consisting of seven parsers

which operate on a small grammar. The output

at this end is not as interesting as are the di�erent

ways the parsers process the input.

1At http://odur.let.rug.nl/�vannoord/TextCat/

5. Experiences

A result of the integration in svensk is that pro-

grams which originally were not built to communicate

which each other are doing this now. Moreover, collect-

ing and distributing algorithmic resources and making

di�erent programs interoperate present a wide range

of challenges, along several di�erent dimensions, both

technical, linguistic, and `political'. We will discuss

the experiences we have drawn from the project and

some of these challenges in this section.

5.1. Technical/software challenges

One of the conclusions of the project is that the

di�culties of software integration never can be over-

estimated. Even when using a fairly liberal framework

like GATE, but with prede�ned interface standards, it

is hard work making di�erent components from di�er-

ent sources and built according to di�erent program-

ming traditions meet any kind of interface standard.

Far too often developers of language engineering com-

ponents do not put enough e�ort in designing and

de�ning the API. No matter how linguistically ade-

quate a piece of LE software is, without a proper API

it is hard to use it in conjunction with other programs.

In addition, just because a set of language engineer-

ing components are able to communicate, the perfor-

mance regarding, e.g., time and memory requirements,

does not necessarily improve or even level with the per-

formance of the individual programs. It is important to

keep such issues in mind when choosing which compo-

nents to integrate. In particular when using a platform

like GATE which does not impose any �natural� con-

straints on the components; when language process-

ing resources are designed and implemented for other

purposes than that of being integrated in a general

tool-box, users are usually aware of the limitations of

the components, e.g., by constraints in the user inter-

face implying that a program cannot be used in certain

ways. Such limitations are not obvious in an environ-

ment like GATE.

The components available are often platform-

dependent and di�cult to install. The data they pro-

duce as well as the type and value ranges of the input

data they expect are seldom clearly de�ned and far too

often inconsistent with the input and output data of

the other modules. To make things worse, neither the

input and output data sets, nor the overall function-

ality of an LE resource is in general documented. Or,

at least, if there is some documentation available, it

is commonly either bad, out-dated, or simply faulty.

This could certainly be partially remedied if providers

of language processing resources supplied some soft-

ware support, something which academia by tradition

back as far away from as possible. This is no sur-

prise, of course. Academic researchers do not (and

should not!) work under the programming code quality

requirements of publically released, commercial soft-

ware. And the creators and users of a tool-box such

as svensk will certainly take this into account. More

surprisingly, the commercial companies in the �eld are



also seriously lacking in both documentation of their

products and in software support. This probably re-

�ects a certain level of inmaturity in the �eld which

will solve itself when the level of competition between

di�erent companies increases.

5.2. Linguistic challenges

Of course, LE components di�er with respect to

such things as language coverage and processing accu-

racy. The trouble is that there is no quality control

available to either the tool-box developer nor to the

end-user. If a large number of LE components are to

be integrated, they should �rst be categorised so that

components with a great di�erence in, say, lexical cov-

erage are not combined.

A familiar problem for all builders of language pro-

cessing systems relates to the adaptation to new do-

mains. When reusing resources built by others this

becomes even more accentuated, especially if an LE

resource is available only in the form of a �black box�,

that is, if it is impossible to access the code inside, as is

commonly the case with e.g. commercial systems (and

thus relates to the documentation issue of the previous

section).

5.3. `Political' challenges

Another problem has been to get access to academic

LE resources. The need for component reuse is often

appreciated by everybody in the �eld. However, to put

action behind words is not as simple as it may sound.

This is not necessarily a consequence of di�erent re-

searchers not really wanting other people to use their

components and research results, but rather a problem

of researches being willing to invest the extra time and

resources to package the components in an exportable

and reusable form.

Still, reusability of processing resources is really

a very uncommon concept in the computational lin-

guistic community. Possibly this also re�ects another

uncommon concept, that of experiment reproducibil-

ity; in most research areas the possibility for other

researchers to reproduce an experiment is taken for

granted. Yes, this is the very core of what is accepted

as good research at all. Strangely enough, this is not

the case in computer science and computational lin-

guistics. We believe that this will change and that

reproducibility will be generally accepted as a crite-

ria of good research even in computational linguistics.

And to give other researchers the option of reproduc-

ing an experiment means giving them access to the

LE resources used in the experiment. Convincing the

CL research community of this is indeed a `political'

challenge.

6. Conclusions

The overall conclusion of the work on collecting and

reusing language processing resources is that it is about

time that computational linguists, computer scientists

and linguists alike start thinking more about how the

programs shall be designed and implemented to get

better performance and consistency. Still, we do not

believe that it is possible to standardise the APIs, other

interfaces, annotation schemata, etc., in themselves.

However, the basic principles which the design of these

should follow, ought to be easier to agree on. If other

people should have a fair chance of reusing a particular

resource, the designer of it should make sure to meet

the following requirements:

� document which domain the system is aimed at

handling, and the level of success at which it ac-

tually does this;

� keep the system architecture open so that other

developers have the possibility of modifying it or

adding functionality;

� produce tools for testing and evaluation (build

test-suites), as well as tools for debugging;

� build a consistent, well-de�ned, and well-

documented API.

The last requirement is probably the most impor-

tant: It is seldom of interest to others to know exactly

what is happening inside a program as long as it is

easy to run it, and it is clear what type and range of

input data it accepts and expects � and what output

data it produces.

Thus, in order to reuse algorithmic resources, we

have to:

1. Make sure that researchers share their implemen-

tations with others (and how this is to be done is

still an open question!).

2. Ask developers to ful�ll the requirements above.

This might appear more or less self-evident; how-

ever, the fact is that points 1 and 2 very seldom are

compatible. At least in the minds of the researchers...

It all leaves a lot more to be done for meeting the chal-

lenges described in this paper, both the technical and

linguistic ones, but maybe in particular the `political'

ones. In total, it de�nitely is time to bring more as-

pects of engineering into the Computational Linguistic

community!

7. Acknowledgements

svensk has been funded by the Swedish Na-

tional Board for Industrial and Technical Develop-

ment (Nutek) and SICS. The project has been guided

by a reference group composed of academic and in-

dustrial members, as well as a Nutek representa-

tive: Lars Ahrenberg, Barbro Atlestam, Robin Cooper,

Anna Sågvall-Hein, Carl-Wilhelm Welin, and Mats

Wirén. Charlotta Berglund, Mikael Eriksson, Scott

McGlashan and Joel Sunnehall all contributed to parts

of svensk, while Ivan Bretan, Jussi Karlgren, and

Christer Samuelsson were involved in the initial speci-

�cations of the system architecture.



8. References

Jonas Beskow, Kjell Elenius, and Scott MacGlashan.

1997. Olga � a dialogue system with an animated

talking agent. In G. Kokkinakis, N. Fakotakis, and

E. Dermatas, editors, Proceedings of the 5th Eu-

ropean Conference on Speech Communication and

Technology, volume 3, pages 1651�1654, Rhodes,

Greece, September. ESCA.

Andrew Bredenkamp, Thierry Declerck, Frederik Fou-

vry, Bradley Music, and Axel Theo�lidis. 1997.

Linguistic engineering using ALEP. In RANLP97

(Mitkov and Nicolov, 1997), pages 92�97.

Eric Brill. 1992. A simple rule-based part of speech

tagger. In Proceedings of the 3rd Conference on Ap-

plied Natural Language Processing, pages 152�155,

Trento, Italy, April. ACL.

Thomas Bub and Johannes Schwinn. 1996. Verbmo-

bil: The evolution of a complex large speech-to-

speech translation system. In Proceedings of the 4th

International Conference on Spoken Language Pro-

cessing, Philadelphia, Pennsylvania, October.

Philip R. Cohen, Adam J. Cheyer, Michelle Wang, and

Soon Choel Baeg. 1994. An open agent architec-

ture. In AAAI Spring Symposium, pages 1�8, Stan-

ford University, California, March.

Hamish Cunningham, Yorick Wilks, and Robert J.

Gaizauskas. 1996. GATE � a general architecture

for text engineering. In Proceedings of the 16th In-

ternational Conference on Computational Linguis-

tics, volume 2, pages 1057�1060, København, Den-

mark, August. ACL.

Mikael Eriksson and Björn Gambäck. 1997. SVENSK:

A toolbox of Swedish language processing resources.

In RANLP97 (Mitkov and Nicolov, 1997), pages

336�341.

Björn Gambäck. 1997. Processing Swedish Sentences:

A Uni�cation-Based Grammar and some Applica-

tions. Doctor of Engineering Thesis, The Royal In-

stitute of Technology, Dept. of Computer and Sys-

tems Sciences, Stockholm, Sweden, June.

Alan Goldschen and Dan Loehr. 1999. The role of

the DARPA communicator architecture as a hu-

man computer interface for distributed simulations.

In Spring Simulation Interoperability Workshop, Or-

lando Florida, March. Simulation Interoperability

Standards Organization (SISO).

Ralph Grishman et al., 1997. TIPSTER Text Phase II

Architecture Design. Version 2.3. New York, New

York, January.

Ralph Grishman, 1995. TIPSTER Phase II Architec-

ture Design Document (Tinman Architecture) Ver-

sion 1.52. New York, New York, July.

Kevin Humphreys, Robert J. Gaizauskas, Hamish

Cunningham, and Saliha Azzam, 1996. VIE Tech-

nical Speci�cations. She�eld, England.

Ruslan Mitkov and Nicolas Nicolov, editors. 1997.

Proceedings of the 2nd International Conference on

Recent Advances in Natural Language Processing,

Tzigov Chark, Bulgaria, September.

Douglas B. Moran, Adam J. Cheyer, Luc E. Julia,

David L. Martin, and Sangkyu Park. 1997. Mul-

timodal user interfaces in the Open Agent Architec-

ture. In Proceedings of the International Conference

on Intelligent User Interfaces, pages 61�68, Orlando,

Florida, January. ACM.

Fredrik Olsson, Björn Gambäck, and Mikael Eriks-

son. 1998. Reusing Swedish language processing re-

sources in SVENSK. In Proceedings of the Work-

shop on Minimizing the E�ort for Language Re-

source Acquisition, pages 27�33, at the 1st Interna-

tional Conference on Language Resources and Eval-

uation, Granada, Spain, May. ELRA.

Klas Prütz. 1997. Sammanställning av en träningsko-

rpus på svenska för träning av ett automatiskt ord-

klasstaggningssystem. (in Swedish).

Anna Sågvall-Hein. 1981. An overview of the Uppsala

Chart Parser version 1 (UCP-1). Technical report,

Center for Computational Linguistics, Uppsala Uni-

versity, Uppsala, Sweden.

Christer Samuelsson. 1994. Fast Natural-Language

Parsing Using Explanation-Based Learning. Doctor

of Engineering Thesis, The Royal Institute of Tech-

nology, Dept. of Computer and Systems Sciences,

Stockholm, Sweden, February.

Stephanie Sene�, Ed Hurley, Raymond Lau, Chris-

tine Pao, Philipp Schmid, and Victor Zue. 1998.

Galaxy�II: A reference architecture for conversa-

tional system development. In Proceedings of the 5th

International Conference on Spoken Language Pro-

cessing, volume 3, pages 931�934, Sydney, Australia,

December.

Neil Simpkins and Marius Groenendijk. 1994. The

ALEP project. Technical report, Cray Systems (now

Anite Systems) / CEC, Luxembourg.

Joel Sunnehall. 1996. Robust parsing using depen-

dency with constraints and preference. Master of

Art Thesis, Uppsala University, Uppsala, Sweden,

September.


