
Integrating seed names and ngrams for a named entity list and classifier

Sabine Buchholz and Antal van den Bosch

ILK / Computational Linguistics
Tilburg University, P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

fS.Buchholz,Antal.vdnBoschg@kub.nl, http://ilk.kub.nl

Abstract
We present a method for building a named-entity list and machine-learned named-entity classifier from a corpus of Dutch newspaper text,
a rule-based named entity recognizer, and labeled seed name lists taken from the internet. The seed names, labeled either as PERSON,
LOCATION, ORGANIZATION, or ADJECTIVAL name, are looked up in a 83-million word corpus, and their immediate contexts are
stored as instances of their label. The latter 8-grams are used by a memory-based machine learning algorithm that, after training, (i) can
produce high-precision labeling of instances to be added to the seed lists, and (ii) more generally labels new, unseen names. Unlabeled
named-entity types are labeled with a precision of 61 % and a recall of 56 %. On free text, named-entity token labeling accuracy is 71
%.

1. Introduction

The task of named entity (NE) classification consists of
mapping proper names to their semantic class. Commonly
used classes are PERSON, LOCATION and ORGANIZA-
TION. NE classification is crucial for information extrac-
tion, but might also be useful as a preprocessing step to
parsing, or in search engines (if users can specify which
class of an ambiguous type they are interested in).

Conceptually, mapping can take place at two different
levels: tokens and types. A token is an occurrence of a
proper name in text. As such, it is always accompanied by
context, and it should always have a unique class. A type,
on the other hand, is an abstract entity,i.e. the name itself,
independent of any context. Most types still have a unique
or at least dominant class. Even if it is true that e.g. a film
might be called Amsterdam, it is still useful to know that
Amsterdamnormally refers to a LOCATION.

Types and tokens of the same name are of course not
independent. To know the class ofa type, we have to look
at many of its tokens. to classify tokens, many NE classifi-
cation systems make use of gazetteers which contain large
lists of classified types.

In this paper, we present a machine learning method
to classify tokens and types of Dutch named entities. We
evaluate both parts of the method through comparison with
hand-annotated test sets. Train and test sets are extracted
from a tokenized Dutch newspaper corpus. Classification
accuracy of tokens is 71%, and of types 66.6%. Precision
and recall of types is 60.9% and 56% respectively.

A prerequisite to NE classification is NE segmenta-
tion/recognition, i.e. finding those strings in a text that con-
stitute a proper name. We implemented a rather straight-
forward NE recognizer and evaluated this, too.

We start with an overview of related research in Sec-
tion 2.. Then we describe the prerequisites of our method,
viz. the Dutch corpus, the basic named-entity extractor
and the seed name lists, in Section 3.. Section 4. describes
the experiments we performed in producing high-precision
additions to our seed lists, as well as the experiments on
named-entity classification. We state our conclusion and
issues for further research in Section 6..

2. Related Research
(Cucerzan and Yarowsky, 1999) present a language-

independent approach and test it for Romanian, English,
Greek, Turkish and Hindi. Their system starts with small
hand-built seed lists (150 to 300 seed words, depending on
the language) and classifies tokens through EM-style boot-
strapping, using word internal and contextual clues. Three
classes are distinguished: first name, last name, and place.
The baseline for this task for Romanian is 98.67% precision
and 34.01% recall, yielding an F-measure of 50.58. Final
system performance is 76.95% precision and 64.99% recall
(F-measure 70.47). (Collins and Singer, 1999)

3. Method
3.1. Overview

As the class of a type can be inferred from the class(es)
of its tokens, the basic module in our approach is a token
classifier. It is realized by IGTree (Daelemans et al., 1997),
a memory-based machine learning algorithm that can han-
dle symbolic data (cf. Section 3.6.).

Training material is created mostly automatically by us-
ing seed lists gathered from the internet. Each token in the
corpus of the types on the seed lists normally provides one
training example (train instance). If a type has more than
one class (i.e. it is ambiguous) several instances are pro-
duced.

The features used are the context words to the left and
the right of the name token. Thus in contrast to (Cucerzan
and Yarowsky, 1999), we do not use name internal infor-
mation (e.g. substrings like Mr. or Inc. yet. Also only
local information is used. Thus if e.g. a text reads “Mr.
John Smith won the contest. Smith said ...”, the two tokens
and types (Mr. John Smithand Smithare classified inde-
pendently. These restrictions make the method simple and
fast.

Once all tokens of a type have been classified, the class
of the type is the majority class of its tokens. In this step,
thresholds can be used to make the classifier abstain from
classification if the majority is not “convincing” enough.

In the next sections, we briefly introduce the corpus, the
tokenizer, the seed lists, the method of extracting instances,

and the IGTree classifier. We will then describe how to-
ken and type classification proceeds, how the test sets were
made, and how we evaluated the two parts of the method.

3.2. The corpus

The Dutch corpus used in our experiment is a subset
of the ILK corpus, a collection of Dutch newspaper text
archives. The subset consists of 160,626 articles (4,432,999
sentences, 83,383,018 words) from three regional news-
papers (Gelderlander, 1996; Brabants Dagbladand Eind-
hovens Dagblad, both 1998) and one central news agency
archive spanning 1985–1991. All texts were collated and
article boundaries removed.

3.3. The tokenizer

Tokenization serves two purposes. First, it separates
punctuation from words, to be able to recognize poten-
tial named entities in sentences like Before we met Tom
Jones, we went out to dinner, where the comma should be
separated from Jones. Second, tokenization also decides
whether a period is an abbreviation period or sentence fi-
nal punctuation; a non-trivial problem (?) that we tackled
using a hand-edited semi-automatically generated abbrevi-
ation list for Dutch. The tokenizer does a good job in the
above two goals, and can use its output also to segment sen-
tences 1

3.4. The seed lists

The seed lists for the commonly used classes PERSON,
LOCATION and ORGANIZATION were found by man-
ually searching the internet. Table 1 gives an overview.
Of the total of 53,065 names, 214 have two classes, and
3 (Dale, Horn, Zurich) have all three classes.

The guidelines we adopted for annotating the test sets
were the following: PERSON includes entities like Shiva,
but not bands like The Who. LOCATION includes conti-
nents, regions, countries, districts, cities, villages etc. but
not streets, building and rivers. ORGANIZATION includes
companies, political parties, non-profit organizations etc.
Note that the internet lists do not contain examples for all
subclasses of a class. In a given application, it might be
useful to chose the precise limits of classes differently.

During annotation of the test set, we noted another
frequently occurring class of capitalized words: adjec-
tives derived from names, like English2. Although these
words do not directly denote named entities in a strict
sense, they are nevertheless important for information ex-
traction: a text that talks about “American politics” talks
about “America” in a way. The seed list for the adjecti-
val class was taken from the electronic Dutch dictionary
CELEX (Baayen et al., 1993) from which we extracted all
adjectives starting with a capital letter.

1Difficulties in sentence segmentation arise because of
informally-marked (sub)section headings without periods, and
article-introductory constructions like Washington (Reuter) In
Washington : : :.

2In Dutch, separate forms exist for the English=de Engelsen
and Englishas in an English villageor a book in English=Engels

PERSON 717,512
LOCATION 494,683
ADJECTIVAL 210,581
ORGANIZATION 91,163

Table 2: Class distribution for train instances

Figure 1: Some train instances

3.5. Training instances

For each type that appears on any of the seed lists, we
extracted all tokens together with a context of four words to
the left and four words to the right from the corpus. 3 This
yields 1,513,939 instances. The distribution of classes over
instancs is shown in Table 2.

Figure 1 shows some example instances.

3.6. IGTree

The weights of the nine features are shown in Table 3.
As could be expected, the name itself (the word in fo-

cus) is the most important feature. This would mean that
during classification of new tokens, the algorithm would
first try to match on this feature. If the feature does not
match, the default class would be assigned without any
further feature matching. This is not what we want, as it
amounts to list look-up only, and does not really classify
the most interesting cases (those that were not on the lists).
We therefore chose to let the algorithm ignore this feature
during classification.

As can be seen from Table 3, the nearer the context word
is to the name token, the more important it is for classifi-
cation. At equal distance, words in front of the name are
more important than those after it. The effect of this is
that IGTree classifies a name token by using n-gram pat-
terns centered around the name. By inspecting the IGTree
built during classification, we can find interesting n-gram
patterns. Table 4 shows a selection of patterns and their
majority class.

The most general patterns (supported by most training
instances) indicate that persons and places are normally not

3If a type has more than one class, instances are multiplied
with the different classes.

Feature GainRatio

left-4 0.029
left-3 0.038
left-2 0.058
left-1 0.132
focus 0.246

right-1 0.095
right-2 0.049
right-3 0.032
right-4 0.027

Table 3: Feature weights

Class Content Number of names

PERSON international male first names 1,219
PERSON international female first names 4,275
PERSON Dutch first names 5,177
PERSON international last names 31,821
PERSON Dutch last names 806

PERSON total 40,618

LOCATION Dutch cities/villages 4,819
LOCATION English country names 163
LOCATION Dutch country names 231

LOCATION total 5,135

ORGANIZATION Dutch non-profit organizations 570
ORGANIZATION USA companies 1,292
ORGANIZATION Dutch companies 4,845
ORGANIZATION Dutch media 783

ORGANIZATION total 7,312

ALL total 53,065

Table 1: Seed lists contents and sizes

een [FOCUS] vrachtwagen a [FOCUS] truck A
burgemeester van [FOCUS] , mayor of [FOCUS] , G
PvdA en [FOCUS] . Socialist party and [FOCUS] . O
staatssecretaris [FOCUS] state secretary [FOCUS] P

Table 4: Some n-gram patterns represented in IGTree’s decision tree, with English translation.

PERSON 348
LOCATION 260
ADJECTIVAL 182
ORGANIZATION 268

Table 5:

preceded by an article, whereas this is not unusual for orga-
nizations, e.g. the Association for Computational Linguis-
tics. At the moment, it is impossible to use n-grams (n¿1)
that span only one side of the context. However, this would
clearly be useful.

4. Results
In this section we present the results on both named en-

tity token labeling and type labeling. In addition, we will
report on our experiences with the simple NE recognizer
and the use of seed lists from internet versus hand-built
lists.

4.1. Classifying tokens

To make a test set for the token classifier, we took the
first 49 articles of the ANDA corpus, a central news agency
archive spanning 1985–1991 (54,835 articles, 32,538,702
sentences 1,460,940 words), and manually segmented and
classified all named entities of our four classes. This yields
1058 tokens. The class distribution is shown in Table 5.

To classify a token, we have to distinguish two cases:
First, if the name is on one of the seed lists, we just adopt

the corresponding class (list look-up).4 With this method,
403 of the 1058 instances can be classified, with a preci-
sion of 90.8% and a recall of 34.6%.5 Following (Cucerzan
and Yarowsky, 1999), we take the baseline (forced classi-
fication) accuracy for this task to be the accuracy achieved
by classifying everything on the seed lists by list look-up,
and everything else as PERSON (the default, most frequent
class). Baseline (forced classification) accuracy is 62%.
Second, if a name is not on any seed list, it is classified by
IGTree (cf. Subsection 3.6.), trained on the train instances
described in Subsection 3.5.. As all instances are assigned
one of the for classes by IGTree, it no longer makes sense
to report precision and recall (as they would be identical),
instead we use accuracy. Accuracy of the 655 instances
classified by IGTree is 58.8%. %. Overall (forced classi-
fication) accuracy (taking together instances classified by
list look-up and by IGTree) is 71% which is well above the
baseline of 62%.

4.2. Classifying types
When evaluating token classification, it makes sense to

also classify tokens whose type is on one of the seed lists.
When classifying types, on the other hand, we are mainly

4If a name is on several lists, just one class is assigned. This
happens with Israel, India and Canada, which, according to the
lists, are person as well as location. Maybe the algorithm should
better abstain.

5Precision means the percentage of classified instances that are
classified correctly, recall means the percentage of all instances
that are classified correctly.

PERSON 319
LOCATION 65
ADJECTIVAL 29
ORGANIZATION 193

Table 6:

interested in new types, in order to be able to add them
to the lists once they are classified. To create a type test
set, we let a simple NE recognizer (see Subsection 4.3.) ex-
tract all NE’s from the corpus, producing a list of 662,034
names. Then all names that are on the seed lists are deleted.
From this remaining subset, we randomly chose 910 of
them turned out to be types of our four classes. Table 6
shows the class distribution. The baseline accuracy for this
set is gained by classifying everything as the default class
PERSON, which yields 52.3%.

To let our system classify these types, we have to make
a detour through token classification. As for the train set,
we extract all tokens from the corpus that contain one of the
names on the type list. This yields 21,754 instanes. After
classifying all instances with IGTree, we set the class of the
type to be the majority class of all its tokens. This approach
yields a (forced classification) accuracy of 66.6% (cf. the
52.3% baseline).

In the above evaluations, we over-simplified the task of
NE classification. Even if we had a perfect NE recognizer,
it would still recognize named entities that do not fall in any
of our four classes. Indeed, our simple NE recognizer (see
Section 4.3.) extracted 186 of those types, too. Examples
are names of bands, streets, rivers, buildings, books, films,
newspapers, reports, laws etc. We would want our NE clas-
sifier to abstain from classifying these instances, i.e. indi-
rectly marking them as a OTHERNAME class.

To achieve this goal, we introduced two thresholds into
our type classifier. As we explained in Section 3.6., each
node in the IGTree carries a (default/majority) class and the
class distribution from which the majority class was com-
puted. Now, if the majority class has a majority of less
than x% (according to the distribution), we change the node
class to OTHERNAME. Let us call x the token threshold.
Then, during the step from tokens to types, we again have
a majority class and a distribution (of the classes of the to-
kens). Again, we change the (type) class to OTHERNAME
if majority is below y% (y: type threshold).

To evaluate the types now classified as either PERSON,
LOCATION, ADJECTIVE, ORGANIZATION or OTH-
ERNAME, we again use precision and recall6 Thus an
OTHERNAME type classified as PERSON counts as a pre-
cision error, a PERSON type classified as a NONE counts
as a recall error, and e.g. a LOCATION type classified as a
PERSON type counts as a precision and recall error. Over-
all precision and recall crucially depends on the settings
of the token and type thresholds. In general, the higher

6Precision means the percentage of instances classified as
PERSON, LOCATION, ADJECTIVE, or ORGANIZATION that
are classified correctly, recall means the percentage of all true
PERSON, LOCATION, ADJECTIVE, or ORGANIZATION in-
stances that are classified correctly.

Figure 2: Precision and recall depending on thresholds

the threshold, the higher precision, but the lower recall.
See Figure 2 for an overview of performance with differ-
ent threshold settings.

In addition to overall precision and recall, we can now
also compute precision and recall per class. We notice large
differences between the classes in this respect.

4.3. Named entity recognition

The most simple NE recognizer just extracts each se-
quence of one or more capitalized words as a name (this
works for English and Dutch but not all language even have
capitalization). If the text is tokenized, the recognizer can
treat capitalized words at the beginning of sentences differ-
ently. If we compute word form frequencies for the whole
corpus, we can avoid extracting capitalized words at the
beginning of sentences that occur with a lower case letter
more often than with a upper case. Along the same reason-
ing we can determine that in the sentence beginning “Maar
Jan ...” (But John ...only Janand neither Maar nor Maar
Jan is a name. If we use a list of closed class words (e.g.
from CELEX, (Baayen et al., 1993)), we can even filter out
similar cases in which the beginning of the sentence is not
clearly marked7 A special problem is formed by last name
prefixes (e.g. van den, cf. the second author’s name) that
are very common in Dutch and have to be written with a
lower case letter if a first name precedes the last name, and
with an upper case letter otherwise. We gathered a list of
40 such prefixes (including e.g. German vonand Italian di).
However not every sequence of capitalized words with a
possible infix in between is a name. The common prefix
van(as in Vincent van Gogh) also appears in constructions
like burgemeester Patijn van Amsterdam(mayor Patijn of
Amsterdam) where the whole is not a name. Using the in-
ternet lists, we therefore restricted the extraction of these
constructions to cases in which the first part is known to be
a first name, and the latter to be a last name. This leaves
names like Rio de Janeirounextracted.

We let a NE recognition program implementing these
heuristics extract names from the corpus. In the process
of building a type test set, we manually annotated 910 of
the extracted strings. Of these, 118 are not names, but ei-
ther normal (open class) nouns that are capitalized because
they start a sentence, while the sentence start is not recog-
nized because the previous sentence does not end in punc-
tuation, or else parts of names like Seven Years (in Tibet)or
Association (for Computational Linguistics). 40 extracted
strings contained in fact two names, either in constructions
like het Noord-Brabantse Alphenwhere Noord-Brabantse
is an ADJECTIVE, but Alphen is a LOCATION, or like
London/Pariswhere the tokenizer failed to separate the two
names, or else like omdat Lubbers Kok ...where one name
directly follows another as adjacent subject and object. For
the evaluation, we treated these double constructions as in-
stances of the class of the second name.

7In our corpus, sentence after (sub)titles frequently show this
problem.

4.4. Internet seed lists vs. hand-built lists

(Cucerzan and Yarowsky, 1999) show that small hand-
crafted seed lists (e.g. 100 names per class) can already be
useful for NE classification. They claim that making these
small lists is not much of an effort. Typically the quality
of these lists is very high. Alternatively, finding some seed
lists on the internet is not much work either. This approach
typically yields large, but somewhat noisy lists. We are
therefore also interested in finding out what the effects of
these different lists are.

We manually assembled lists of 100 names per class
and repeated all of the experiments described above with
these lists. As there are a lot less names on the seed lists
now, the number of training instances is also less: 961,407
(vs.1,513,939 when using the internet lists). When clas-
sifying the token test set, less instances can be classified
directly by list look-up: 310 (vs. 403). However, pre-
cision is much higher: 99.7%; recall is 29.2%. Baseline
accuracy (list look-up, everything else default class PER-
SON) is comparable: 60.2% vs. 62% with the internet seed
lists. Overall system accuracy however is lower: 64.4% vs.
71%. The same holds for type classification: accuracy is
45.6% vs. 66.6%, precision and recall are 47.8%/34.4%
vs. 60.9%/56%. Thus in our case, large noisy internet lists
proved more succesful than small high-quality hand-built
lists.

A possible explanation comes from the distribution of
classes in both train sets. In the train set generated with the
internet lists, PERSON is the most frequent class, then LO-
CATION, ADJECTIVE and last ORGANIZATION. This
is the same order as in the token test set. In the type test
set, the order is PERSON, ORGANIZATION, LOCATION
, ADJECTIVE, but PERSON still is the most frequent type.
In the train set generated from the hand-built lists however,
the order is LOCATION, ADJECTIVE, PERSON, ORGA-
NIZATION. This means that whenever there is little or con-
flicting evidence about how to classify an instance, the al-
gorithm will take LOCATION as default which is a worse
choice than PERSON in most cases. Indeed, LOCATION
has the highest recall butthe lowest precision when looking
at individual classes.

5. Future Research
Evaluate using a threshold on tokens and NONE class

token instances. Adding new types to lists.

6. Conclusion

7. References
Baayen, R. H., R. Piepenbrock, and H. van Rijn, 1993.

The CELEX lexical data base on CD-ROM. Philadel-
phia, PA: Linguistic Data Consortium.

Collins, M. and Y. Singer, 1999. Unsupervised models
for named entity classification. In P. Fung and J. Zhou
(eds.), Proceedings of EMNLP/VLC’99. College Park,
MD: ACL.

Cucerzan, S. and D. Yarowsky, 1999. Language indepen-
dent named entity recognition combining morphologi-
cal and contextual evidence. In P. Fung and J. Zhou

(eds.), Proceedings of EMNLP/VLC’99. College Park,
MD: ACL.

Daelemans, W., A. Van den Bosch, and A. Weijters, 1997.
IGTree: using trees for compression and classification in
lazy learning algorithms. Artificial Intelligence Review,
11:407–423.

