
FAST-Towards a Semi-automatic Annotation of Corpora

� � �������	
��
School of Humanities, Languages and Social Sciences

University of Wolverhampton
Stafford Road, Wolverhampton, UK

in6465@wlv.ac.uk

Abstract
We present in this paper a user-friendly annotation tool that allows a user to perform any kind of annotation on a corpus, either in a
manual, semi-automatic or automatic way. We also show how different processing tools can be integrated in the system in order to
speed up the human annotation and we describe two such tools that we have integrated in FAST.
.

1. Introduction
As the use of annotated corpora in natural language

processing applications increases, we are aware of the
necessity of having flexible annotation tools that would
not only support the manual annotation, but also enable us
to perform post-editing on a text which has already been
automatically annotated using a separate processing tool
and even to interact with the tool during the annotation
process.

In practice, we have been confronted with the problem
of converting the output of different tools to SGML
format, while preserving the previous annotation, as well
as with the difficulty of post-editing manually an
annotated text. It has occurred to us that designing an
interface between an annotation tool and any automatic
tool would not only provide an easy way of taking
advantage of the automatic annotation but it would also
allow an easier interactive manual editing of the results.
FAST was designed as a manual tagger that can also be
used in conjunction with automatic tools for speeding up
the human annotation.

2. Corpus annotation
In its modern acceptance, a corpus represents a

representative collection of texts in a machine-readable
format.

Corpora may take two forms: plain text (unannotated),
or annotated (enriched with different kinds of
information).

Though unannotated corpora are important for
language studies, usability increases by the existence of
annotation.

This not only provides additional text information, but
it also allows an easier automatic manipulation. An
annotated corpus becomes an important repository of
linguistic information and so it can be used in many more
circumstances then raw text corpora.

2.1. Annotation standards
Though we cannot speak about a generally agreed

standard for corpus annotation, there are recent initiatives
that aim to provide a standard for the information
encoding in electronic texts. The most important trend of
this kind is the TEI (Text Encoding Initiative) project,
which came with a set of guidelines of how a large
number of annotation types can be encoded in an
electronic format (Sperberg, 1994). The document mark-
up that TEI uses is SGML.

Compared with other annotation methods, encoding
the annotation in SGML format presents some
advantages. First, it is a widely used marking standard,
strongly formalised and easily readable; the information is
easy to process automatically and it is also easy to extract
separate annotated features or the whole annotation apart
from the text for storing in an other format (for example,
in a database).

As a result of the need of providing a set of standards
for encoding corpora, the European projects MULTEXT
and EAGLES, have developed a Corpus Encoding
Standard (CES), conformant with the TEI guidelines, for
use in language engineering applications, which can serve
as a widely accepted set of encoding standards for corpus-
based work. CES identifies a minimal encoding level that
corpora must achieve to be considered standardized in
terms of descriptive representation (marking of structural
and linguistic information) as well as general architecture
(so as to be maximally suited for use in a text database). It
also provides encoding conventions for more extensive
encoding and for linguistic annotation. CES favors the
storage of the annotation in SGML format (in the new
XCES version, in XML format) apart from the main
document, to which it is related by hyper-links.

2.2. Types of annotation
Typically, corpora have to contain a basic annotation

about the type of the document. Other basic marks, which
are considered minimal, are the paragraph and sentence
boundaries. Further annotation depends on the purpose for
which the annotation is performed.

In order to be used in a natural language processing
task, a corpus needs to contain more detailed information
about the language structure.

The most usual annotation of this kind is the marking
of linguistic information, i.e. assign to words special
codes that describe different features. The fundamental
linguistic annotation is the part-of-speech tagging, which
mainly consist in assigning to each word the
morphological category to whom it belongs and specific
morphological features like number, gender, case, tense,
and so on. This type of annotation is extremely useful in
any kind of information extraction system and it also
constitutes the basis for most of the natural language
processing systems, like syntactic parsing, anaphora
resolution, automatic translation, and semantic
disambiguation. A higher level of annotation can consist
of the marking of stylistic, pragmatic and semantic
features.

2.3. Manual annotation vs. automatic
annotation

The annotation can be performed manually, by human
annotators (one or more persons) or automatically (with
or without human post-editing).

The method chosen for annotating a corpus has to
establish a balance between the cost (both human and
material) involved for building the corpus and the
accuracy required.

If only limited funding is available, an error margin of
up to 6-7% might be considered acceptable, especially if
the tagged corpus is seen as an end product. However, it
has to be kept in mind that an important feature of a
corpus is its reusability, so existing tags can be used for
performing further annotation. In this case, errors in one
kind of annotation could carry errors in further types of
annotation, and the overall accuracy of the corpus may
decrease.

Types of annotation suitable for automatic annotation
are for example the morphological annotation. First,
because manual annotation of a corpus containing several
millions of words is a very expensive and time-consuming
process and second, because impressive accuracy has
been obtained by different part-of-speech taggers.
CLAWS system (Garside, 1987), for example, reports a
precision of 96-98%, with different tag sets (of 130-160
tags), while Tosca parser reports a precision of 90-94%
(with a tagset of 270 tags). Therefore, the human effort
needed for manual post-editing of the tagged corpus is
considerably lower than for fully manual annotation.

But for the marking of linguistic features that are
intrinsically complex, as it is the case with the anaphoric
relations, the semantic or the pragmatics of the text, no
tool can perform well enough as to rely on a fully
automatic annotation.

3. Annotation tools
Since fully automatic corpus tagging is not yet

plausible, the need for low-level annotation tool that can
help the human expert in different phases of corpus
annotation will always exist.

Currently, there are several annotation tools, more or
less designed for specialised tasks. The most common
tagger in use is Alembic Workbench, developed at Mitre
Corporation, with versions for both Windows and Unix
platforms. It allows, besides the mark-up operations for
supporting a manual annotation of texts, some other
useful operations to be performed, as a scorer, a
segmentation tagger, an auto and auto-confirm mode.
Despite these functionalities, Alembic is not always
intuitive, nor easy to use by a beginner, and a big part of
the features existent in the Unix version are not currently
available in the Windows version.

Gloss (Cristea, 1998) is a multi-document Windows
application that besides the usual textual annotation
allows in a friendly way the construction of discourse
trees; it also produces a database image of the SGML
annotated file. Unfortunately, it is fairly unstable, it only
runs under Windows and it is dependant of a manually
written DTD. Other annotators for more specific tasks are
Xanadu (Fligelstone, 1992), an X-Window editor
developed for annotating anaphoric relations within the
UCREL anaphoric annotation scheme, CLinkA (Orasan,
2000), developed for co-referential tagging using the

MUC annotation scheme, RSTTool (O’Donnell, 1997),
for marking the rhetorical structure of a text, AnnoTag,
developed at DFKI and used within the VERBMOBIL
project for the annotation of spoken dialogues.

Within the MATE project, it is under development a
workbench for corpus annotation with extended
functionality that will support the use of the standard and
enable annotation, different presentation formats,
information extraction, statistical analysis, and mapping
between different formats.

4. An integrated approach to annotation
As previously stated, an important characteristic of a

corpus is its reusability and its ability of being enriched
with new kinds of annotation.

The problem with using automatic processing tools is
that there is no generally agreed annotation standard,
which all of them could employ. This could give raise to
several problems concerning the compatibility between
two different annotations. First, the output of two
processing tools might not be compatible; this not only
complicates the annotation process and the post-editing,
but it also makes the annotation retrieving more difficult.
Second, a processing tool may not recognise as input an
already annotated file, or, if it accepts it as input, it may
not preserve the existing annotation.

The way of constructing a multi-level annotation on a
corpus is to decide on an annotation scheme to be
employed and to convert the output of the processing
tools to a format consistent with the annotation scheme.
There still remains the problem of preserving the previous
annotation when applying a new tool, which requires
additional pre-processing.

5. Description of Fast
FAST (Friendly Annotator for SGML Texts) is an

SGML-compliant tool, which reads any correctly
constructed SGML-file, by identifying the tags and the
attributes associated to each tag. It uses the Hex-0.9 XML
parser (Kristensen), which implements both an event-
based–SAX, and a tree-based –DOM- API. We have
slightly modified the parser to suit our purposes.

The computer support is provided by an option that
allows the user to select one of the three possible working
modes: manual (non-automatic), semi-automatic or fully
automatic.

5.1. Manual annotation
The non-automatic mode enables the user to manually

annotate a text by the way of FAST visual interface. The
basic facilities provided by FAST are similar with those
offered by other annotation tools. The user can retrieve
the information associated with a section of text and can
modify it. This includes modifying the name of the tags
and the attributes and the values associated with a tag.
One can also define new tags and attribute-value pairs for
the tags.

A special attention is given to the attributes that can
have as associated value an other element of text. In this
case, the link is established by the way of the identifier
associated to every marked entity.

Annotating a span of text can be done either by
selecting the appropriate tag in a combo box, by typing
the name of the tag or by pressing the button associated to

the tag. By default, the tag that is assigned to a portion of
text is the last tag that was used.

There can also be introduced empty tags, which are
saved at the end of the SGML document.

5.2. Automatic annotation
What it has to be mentioned from the beginning is that

FAST is not an integrated automatic tool for corpus
annotation, i.e. it does not provide software for automatic
annotation, nor is dependant of any processing tool. It
simply allows the user to incorporate already existing
tools into the annotator without the necessity of
recompiling the application’s source or of knowing details
about the internal structure of FAST.

The way an aiding tool is integrated in the system is
by writing an interface between the output of the above-
mentioned tool and FAST. This interface is compiled
separately and the resulting file is copied in the FAST
directory structure. FAST becomes automatically aware
of the existence of the tool, loads it dynamically and it can
therefore use it when requested. If the tool was for some
reason wrongly designed or compiled, or if it is no longer
compatible with the current version of FAST, a runtime
error is thrown and the tool is not integrated in the
program.

Being completely independent of the annotator, the
supporting modules can be easily improved or modified in
any way without affecting the implementation of the
whole project. The only way an automatic tool can reduce
the functionality of FAST is if the tool is platform-
dependant – in which case it not be run directly from
FAST, if running under a different environment.

Semi-automatic annotation can be used for two
purposes:
• Correcting the annotation errors introduced by the
automatic tool
• Eliminating ambiguities, if the automatic tool allows
them to appear.

The semi-automatic mode enables the user to interact
with the automatic annotator, being prompted before an
annotation is performed; the user can then chose to accept
the changes, ignore them or edit the annotation. In the
fully automatic mode, the annotation is performed without
human intervention. If the automatic tool used allows
ambiguities, the most highly ranked alternative is kept.
Switching to fully automatic or semi-automatic annotation
is realized by selecting from the main menu the tool one
wants to use and by customizing its behaviour.

The information that the user can customize by the
way of the visual interface consists of the tags that the
aiding tool introduces and the attributes associated to each
tag. The tag set provided by an aiding tool can be
restricted, which is important for example if the user only
wants to keep certain type of information (for example,
only the words mark-up provided by a morphological
parser, not the paragraph or the sentence mark-up, if
existent). Similarly, one can eliminate some of the
attributes contained in a tag definition. The name of the
tags and attributes can also be changed. The default value
is the one specified in the aiding tool interface.

An other important feature that can be customized is
the behaviour of the tool when other tags are encountered,
for example when a level of annotation is added upon
older levels. If the text is already annotated, and the tag

WORD is present, for example, and a further part-of-
speech annotation is performed that also introduces the
WORD tag, the default action would be to construct a
wrapping WORD tag around the existing one. This is
usually not desirable, since it leads to difficulties in
readability; therefore, the user can chose between
constructing a wrapping tag and adding the attributes
added by the currently used tool to the existent tag. A
similar type of behaviour can be customized for the
attributes associated to a tag; if they already exist in the
annotation, the user can chose to either keep the previous
value or replace it with the new one.

5.3. Defining a DTD
Though theoretically it is possible to annotate without

specifying a DTD, it seems that most of the time it is
advisable to define a configuration file for a specific task.
There are at least two evident reasons for defining a DTD:
first, the risk of human errors is reduced, because the
correctness and consistency of the annotation can be
insured through the visual interface; second, the
annotation process is easier and less time-consuming,
since there are only a limited number of tags to select
from and a limited number of attributes.

The idea behind FAST is to allow both a DTD-free
and a DTD-based annotation. The user can define a DTD
in an interactive, easy-to-use mode; the information
required consists of the tagset used and the relationships
that can appear between tags. This information can be
stored either as a default configuration file (that will be
loaded every time a document is open in FAST, which is
useful when there is one kind of annotation that is
predominantly used), or as a simple configuration file. At
any moment, the user can load an other DTD stored in a
file.

Though the system ensures that the annotation is
consistent with the defined DTD, if the SGML file is
modified outside FAST it is not possible to determine
inconsistencies in annotation at loading time. This
happens because an SGML file is not associated with a
certain DTD file.

5.4. Visual interface
FAST uses a friendly visual interface, which was

designed to help the user to carry out the annotation task
in an efficient way and to enable them to visualise the
result of their annotation at any moment. The principle
behind the interface was to minimise the number of
keystrokes necessary for performing an operation. Both
the mouse and the keyboard can be used as input.

It is possible to visualise the tags by using only the
mouse, and it is also reasonably easy to add new tags.

The main window is split in two resizable parts. The
text to be annotated is displayed in the left, while
information about the currently visualised/edited tag are
displayed in the right part of the window.

The bottom panel contains a list of buttons, each of
them associated with a different tag; their default action is
to construct a new tag of the type indicated by the button
for the segment of text currently selected.

Every time a new part of text is annotated, it is
highlighted in the editor window, and if a new tag was
introduced, a new button associated to the tag is added in
the bottom panel.

The user can visualize the tags existent in the system.
The tags that are associated with a segment of text are
displayed by highlighting the text, while the extra-textual
tags are displayed in a separate window.

In the semi-automatic mode, the results are displayed
and the user’s input is required in a separate window, in
order to avoid confusion.

5.5. Implementation
It is worth mentioning the importance of portability

for such a tool, featuring platform independence as well
as language independence. We have chosen to develop
FAST in Java, using JDK 1.2, so it takes advantage of the
Java platform independence features, as well as of the
Unicode support, which allows for documents using any
set of characters to be processed.

The structure of FAST is modular, allowing easy
extension and code reusability.

6. Structure of an aiding tool
The functionality of a supporting module is

implemented via a Java API (Application Programming
Interface), which defines the basic behaviour of any tool.

The main information that an aiding tool has to
provide consists in: its name (the name that appears in the
FAST menu bar), the tags that it adds or modifies and, for
each modified tag, the attributes that it adds or modifies.

For every span of text that is annotated, it has to
specify the text, the tag that is added and the possible
values for every attribute.

The design of the interface is based on the assumption
that a processing tool introduces only one level of
annotation, meaning that we cannot have two different
tags applied on the very same segment of text.

It is important to mention that the way the interface
between FAST and the supporting module is designed can
differ very much from case to case.

For example, if the implementation details of the
module are not known, the interface can be seen as a pipe
process between the output of the tool and FAST. The file
currently open in FAST is submitted to the tool for
processing and the resulting file is then parsed and the
information transmitted back to FAST.

If the implementation of the tool is known and
accessible, it should be possible to transmit the result to
FAST without the need for an intermediary output file.

Basically, the Java interface that one has to implement
in order to integrate an automatic tool in the visual
environment provided by FAST consists in functions for
retrieving the information mentioned above. In addition,
the user has to define the behaviour of the tool when the
next marked element is encountered.

7. Two annotation tools
Because it was originally designed as a tool for

annotating anaphoric relations in corpora, FAST currently
has some features that are more useful for this particular
task than for any other kind of annotation. Two tools have
been developed for sustaining the anaphoric tagging, and
a third one (for providing WordNet access) is under
development.

7.1. Part of speech tagging
The first tool that we have linked to FAST is QTag,

the probabilistic part-of-speech tagger developed at the
University of Birmingham (Mason).

The way we implemented the interface between QTag
and FAST was by the mean of parsing the output file of
the tagger.

The parser can be used in either an automatic or semi-
automatic way. As it is fairly accurate, the post-editing of
the results is not very expensive. Since QTAG is a non-
robust tool, it proposes a list of possible values for each
attribute, so it was really useful to have the semi-
automatic feature of FAST for choosing between
alternatives.

7.2. Coreferential annotation
The second tool we have developed is a module that

provides the human editor with hints regarding the
preferred antecedents for a noun phrase.

The module was definitely not designed for automatic
annotation of anaphoric relations, but as a basic aid for
human annotators.

Though it still relies mainly on human intervention,
the annotation of co-referential links is improved by a
very simple, but fast process that analyses the
morphological features of the noun phrases and returns
for each referential expression a list of possible
antecedents based on morphological agreement.

We have used the QTag part-of-speech tagger trained
for English, so obviously the process is limited to
analysing anaphoric relations in this language. The results
of any part-of-speech tagger are not 100% accurate, and
the co-referential relations do not always obey the
morphological agreement. Therefore it would not be
realistic to propose as antecedents only those discourse
entities that pass this basic filter; the final decision
belongs to the user, who can reject the proposed
antecedents and select any other discourse entity.

The module interacts directly with FAST structure, so
there is no need for an intermediary output file.

8. Conclusion & Future Work
We have presented in this paper FAST, a visual

annotation tool that provides support for human
annotation. We have also showed how an interface can be
designed between different automatic annotation tools can
FAST for the user to be able to perform interactive editing
of the results.

As FAST is still under development, a lot of ideas
have yet to be implemented. In the future, we would like
to be able to automatically deduce the structure of an
SGML input file, and to develop more support modules,
especially for the annotation of anaphoric relations. An
other prospective feature is the conversion between
annotation schemes.

We would also like to improve the user interface, by
providing an undo feature, and enabling the user to define
their own shortcut keys for different actions.

Figure 1: A snapshot of FAST during a manual annotation process

9. References
Cristea, D., Craciun, O. & Ursu, C, 1998. Gloss-a Visual

Annotation Tool for Corpus Annotation, Esslli’98,
Saarbruecken

Fligelstone,S., 1992. Developing a Scheme for Annotating
Text to Show Anaphoric Relations. In: G. Leitner (ed.),
New Directions in Corpus Linguistics. Berlin: Mouton
de Gruyter. pp153-170.

Garside, R., 1987. The CLAWS Word-tagging System. In:
R. Garside, G. Leech and G. Sampson (eds), The
Computational Analysis of English: A Corpus-based
Approach. London: Longman.

Kristensen, A. HEX - The HTML Enabled XML Parser,
http://hplbwww.hpl.hp.com/people/ak/java/hex.html

Leech, G., 1993. Corpus annotation schemes, Literary
and Linguistic Computing 8(4): 275-81.

Mason, O. QTag, A Portable Part of Speech Tagger.
“http://www-clg.bham.ac.uk/QTAG/”

O'Donnell, M., 1997. RSTTool- an RST Analysis Tool.
Proceedings of the 6th European Workshop on Natural
Language Generation March 24 - 26, 1997 Gerhard-
Mercator University, Duisburg, Germany

Orasan,C., 2000. ClinkA – a Coreferential Links
Annotator. forthcoming

Sperberg-McQueen, C.M. & Burnard, L, 1994.
Guidelines for Text Encoding and Interchange (TEI-
P3). ACH-ACL-ALLC Text Encoding Initiative,
Chicago and Oxford

